Package ‘ACDC’

January 12, 2022

Title Analysis of Congruent Diversification Classes
Version 1.0.0
Encoding UTF-8
Description Features tools for exploring congruent phylogenetic birth-death models. It can construct the pulled speciation- and net-diversification rates from a reference model. Given alternative speciation- or extinction rates, it can construct new models that are congruent with the reference model. Functionality is included to sample new rate functions, and to visualize the distribution of one congruence class. See also Louca & Pennell (2020) <doi:10.1038/s41586-020-2176-1>.

LazyData true
Depends R (>= 3.5.0), ggplot2
Imports magrittr, deSolve, dplyr, tibble, colorspace, patchwork, latex2exp, tidyrr
License GPL-3
Suggests knitr, rmarkdown, ape
RoxygenNote 7.1.2
URL https://github.com/afmagee/ACDC
NeedsCompilation no
Author Bjørn Tore Kopperud [aut, cre],
 Sebastian Höhna [aut],
 Andrew F. Magee [aut]
Maintainer Bjørn Tore Kopperud <kopperud@protonmail.com>
Repository CRAN
Date/Publication 2022-01-12 20:02:50 UTC

R topics documented:

ACDC-package ... 2
congruent.models .. 3
create.model ... 4
ACDC-package

Description

Features tools for exploring congruent phylogenetic birth-death models. It can construct the pulled speciation- and net-diversification rates from a reference model. Given alternative speciation- or extinction rates, it can construct new models that are congruent with the reference model. Functionality is included to sample new rate functions, and to visualize the distribution of one congruence class. See also Louca & Pennell (2020) <doi:10.1038/s41586-020-2176-1>.

References

Author(s)

Maintainer: Bjørn Tore Kopperud <kopperud@protonmail.com>

Authors:

- Sebastian Höhna
- Andrew F. Magee
congruent.models

See Also

Useful links:

- https://github.com/afmagee/ACDC

congruent.models
Create a set of congruent models

Description

Create a set of congruent models

Usage

congruent.models(model, mus = NULL, lambdas = NULL, keep_ref = TRUE)

Arguments

- **model**: The reference model. An object of class "ACDC"
- **mus**: A list of extinction-rate functions
- **lambdas**: A list of speciation-rate functions
- **keep_ref**: Whether or not to keep the reference model in the congruent set

Value

An object of class "ACDCset"

Examples

data(primates_ebd)
lambda <- approxfun(primates_ebd$time, primates_ebd$lambda)
mu <- approxfun(primates_ebd$time, primates_ebd$mu)

A reference model
times <- seq(0, max(primates_ebd$time), length.out = 500)
model <- create.model(lambda, mu, times = times)

mu1 <- lapply(c(0.5, 1.5, 3.0), function(m) function(t) m)
model_set1 <- congruent.models(model, mus = mu1)

lambda0 <- lambda(0.0) ## Speciation rates must all be equal at the present
bs <- c(0.0, 0.01, 0.02)
lambda1 <- lapply(bs, function(b) function(t) lambda0 + b*t)
model_set2 <- congruent.models(model, lambdas = lambda1)
model_set2

create.model

Computes the congruent class, i.e., the pulled rates.

Description
Computes the congruent class, i.e., the pulled rates.

Usage
create.model(
 func_spec0,
 func_ext0,
 times = seq(from = 0, to = 5, by = 0.005),
 func_p_spec = NULL,
 func_p_div = NULL
)

Arguments
func_spec0 The speciation rate function (measured in time before present).
func_ext0 The extinction rate function (measured in time before present).
times the time knots for the piecewise-linear rate functions
func_p_spec the pulled speciation rate function
func_p_div the pulled net-diversification rate function

Value
A list of rate functions representing this congruence class.

Examples
lambda1 <- function(t) exp(0.3*t) - 0.5*t + 1
mu1 <- function(t) exp(0.3*t) - 0.2*t + 0.2
model1 <- create.model(lambda1, mu1, times = seq(0, 5, by = 0.005))
model1
data("primates_ebd")
lambda2 <- approxfun(primates_ebd["time"], primates_ebd[,"lambda"])
mu2 <- approxfun(primates_ebd["time"], primates_ebd[,"mu"])
model2 <- create.model(lambda2, mu2, primates_ebd["time"])
model2
model2df

Description

model2df

Usage

model2df(model, gather = TRUE, rho = 1)

Arguments

model an object of class "ACDC"
gather boolean. Whether to return wide or long data frame
rho the sampling fraction at the present. Used to calculate the pulled speciation rate

Value

a data frame

Examples

lambda <- function(t) 2.0 + sin(0.8*t)
mu <- function(t) 1.5 + exp(0.15*t)
times <- seq(from = 0, to = 4, length.out = 1000)
model <- create.model(lambda, mu, times = times)
model2df(model)

plot.ACDC Plots the rate functions including the pulled rates.

Description

Plots the rate functions including the pulled rates.

Usage

S3 method for class 'ACDC'
plot(x, ...)

Arguments

x An object of class "ACDC"
... other parameters
Examples

```r
data(primates_ebd)
lambda <- approxfun(primates_ebd$time, primates_ebd$lambda)
mu <- approxfun(primates_ebd$time, primates_ebd$mu)
times <- seq(0, max(primates_ebd$time), length.out = 500)

model <- create.model(lambda, mu, times = times)

plot(model)
```

plot.ACDCset
Plots the rate functions

Description

Plots the rate functions

Usage

```r
## S3 method for class 'ACDCset'
plot(x, ...)
```

Arguments

- `x` A list of congruent birth-death
- `...` other parameters

Value

nothing

Examples

```r
data(primates_ebd)
lambda <- approxfun(primates_ebd$time, primates_ebd$lambda)
mu <- approxfun(primates_ebd$time, primates_ebd$mu)
times <- seq(0, max(primates_ebd$time), length.out = 500)

model <- create.model(lambda, mu, times = times)

mus <- list(function(t) 0.2 + exp(0.01*t),
            function(t) 0.2 + sin(0.35*t) + 0.1*t,
            function(t) 1.0,
            function(t) 0.5 + 0.2*t)
models <- congruent.models(model, mus = mus)

plot(models)
```
primates

primates
Primates phylogenetic tree

Description

The example tree taken from the RevBayes tutorial website

Usage

```r
data(primates)
```

Format

An object of class `phylo` of length 5.

primates_ebd
RevBayes Primates birth-death model

Description

The results of a bayesian horseshoe markov random field (HSMRF) episodic birth-death model, fitted on the primates tree. One hundred episodes. Each estimate is the posterior median. The time unit is millions of years before the present.

Usage

```r
data(primates_ebd)
```

Format

An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 100 rows and 3 columns.

primates_ebd_log
Primates birth-death model

Description

See `?primates_ebd`, but including posterior samples instead of a summary.

Usage

```r
data(primates_ebd_log)
```

Format

An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 251 rows and 604 columns.
Description

The results of a bayesian episodic birth-death model in the R-package TESS, fitted on the primates tree. One hundred episodes. Each estimate is the posterior median. The time unit is millions of years before the present.

Usage

```r
data(primates_ebd_tess)
```

Format

An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 100 rows and 3 columns.

Description

The results of a birth-death model in the R-package TreePar, fitted on the primates tree. The estimated model has two epochs, that are maximum-likelihood estimates. The time unit is millions of years before the present.

Usage

```r
data(primates_ebd_treepar)
```

Format

An object of class `tbl_df` (inherits from `tbl`, `data.frame`) with 100 rows and 3 columns.
print.ACDC

Description

Print method for ACDC object

Usage

```r
## S3 method for class 'ACDC'
print(x, ...)
```

Arguments

- `x` and object of class ACDC
- `...` other arguments

Examples

```r
data(primates_ebd)
lambda <- approxfun(primates_ebd$time, primates_ebd$lambda)
mu <- approxfun(primates_ebd$time, primates_ebd$mu)
times <- seq(0, max(primates_ebd$time), length.out = 500)

model <- create.model(lambda, mu, times = times)

print(model)
```

print.ACDCposterior

Title

Description

Title

Usage

```r
## S3 method for class 'ACDCposterior'
print(x, ...)
```

Arguments

- `x` a list of ACDC objects
- `...` additional parameters
print.ACDCset

Value

nothing

Examples

data(primates_ebd_log)
posterior <- read.RevBayes(primates_ebd_log, max_t = 65, n_samples = 20)
print(posterior)

Description

Print method for ACDCset object

Usage

S3 method for class 'ACDCset'
print(x, ...)

Arguments

x an object of class ACDCset
...
other arguments

Examples

data(primates_ebd)
lambda <- approxfun(primates_ebd$time, primates_ebd$lambda)
mu <- approxfun(primates_ebd$time, primates_ebd$mu)
times <- seq(0, max(primates_ebd$time), length.out = 500)

model <- create.model(lambda, mu, times = times)

mus <- list(function(t) 0.2 + exp(0.01*t),
 function(t) 0.2 + sin(0.35*t) + 0.1*t,
 function(t) 1.0,
 function(t) 0.5 + 0.2*t)
models <- congruent.models(model, mus = mus)

print(models)
print.ACDCsets

Description

print.ACDCsets

Usage

S3 method for class 'ACDCsets'
print(x, ...)

Arguments

x a list of (congruent) ACDC sets
...
 additional parameters

Value

nothing

Examples

data(primates_ebd_log)

posterior <- read.RevBayes(primates_ebd_log, max_t = 65, n_samples = 20)

samples <- sample.congruence.class.posterior(posterior,
 num.samples = 20,
 rate.type = "extinction",
 rate0.median = 0.1,
 model = "MRF",
 max.rate = 1.0)

print(samples)

read.RevBayes

Description

read RevBayes log file

Usage

read.RevBayes(x, n_times, max_t = 100, n_samples = 20, summary_type = "none",
 extinction_prefix = "extinction_rate.", speciation_prefix = "speciation_rate.")
Arguments

- `x`: path to log, or data frame
- `n_times`: number of time knots
- `max_t`: tree height
- `n_samples`: first n posterior samples
- `summary_type`: either "none" for all the posterior samples, or "mean" or "median" for the posterior mean/median
- `extinction_prefix`: the prefix string for the extinction rate column names. Must be unique
- `speciation_prefix`: the prefix string for the speciation rate column names. Must be unique

Value

A set of ACDC models, each being a sample in the posterior

Examples

```r
data(primates_ebd_log)
posterior <- read.RevBayes(primates_ebd_log, n_times = 500, max_t = 65, n_samples = 20)
```

sample.basic.models
 Samples simple increase/decrease models through time with noise.

Description

Samples simple increase/decrease models through time with noise.

Usage

```r
sample.basic.models(
  times,
  rate0 = NULL,
  model = "exponential",
  direction = "decrease",
  noisy = TRUE,
  MRF.type = "HSMRF",
  monotonic = FALSE,
  fc.mean = 3,
  rate0.median = 0.1,
  rate0.logsd = 1.17481,
  min.rate = 0,
  max.rate = 10
)
```
Arguments

times the time knots
rate0 The rate at present, otherwise drawn randomly.
model "MRF" for pure MRF model, otherwise MRF has a trend of type "exponential","linear", or "episodic<n>"
direction "increase" or "decrease" (measured in past to present)
noisy If FALSE, no MRF noise is added to the trajectory
MRF.type "HSMRF" or "GMRF", type for stochastic noise.
monotonic Whether the curve should be forced to always move in one direction.
fc.mean Determines the average amount of change when drawing from the model.
rate0.median When not specified, rate at present is drawn from a lognormal distribution with this median.
rate0.logsd When not specified, rate at present is drawn from a lognormal distribution with this sd
min.rate The minimum rate (rescaling fone after after drawing rates).
max.rate The maximum rate (rescaling fone after after drawing rates).

Value

Speciation or extinction rate at a number of timepoints.

Examples

data("primates_ebd")

l <- approxfun(primates_ebd["time"], primates_ebd["lambda"])
mu <- approxfun(primates_ebd["time"], primates_ebd["mu"])
times <- primates_ebd["time"]

model <- create.model(l, mu, times)

mus <- sample.basic.models(times = times,
 rate0 = 0.05,
 "MRF",
 MRF.type = "HSMRF",
 fc.mean = 2.0,
 min.rate = 0.0,
 max.rate = 1.0)

model_set <- congruent.models(model, mus = mus)

model_set
sample.congruence.class

Stochastic exploration of congruent models.

Description

Stochastic exploration of congruent models.

Usage

```r
sample.congruence.class(
  model,
  num.samples,
  rate.type = "both",
  sample.speciation.rates = NULL,
  sample.extinction.rates = NULL
)
```

Arguments

- **model**: the reference model, an object of class "ACDC"
- **num.samples**: The pulled diversification rate function (measured in time before present).
- **rate.type**: either "extinction", "speciation", or "both"
- **sample.speciation.rates**: a function that when called returns a speciation rate function
- **sample.extinction.rates**: a function that when called returns a extinction rate function

Value

A named list with congruent rates.

Examples

```r
data("primates_ebd")

l <- approxfun(primates_ebd["time"], primates_ebd["lambda"])
mu <- approxfun(primates_ebd["time"], primates_ebd["mu"])
times <- primates_ebd["time"]

model <- create.model(l, mu, primates_ebd["time"])

extinction_rate_samples <- function(){
  res <- sample.basic.models(times = times,
                             rate0 = 0.05,
                             model = "MRF",
                             MRF.type = "HSMRF",
                             extinction = TRUE)
  return(res)
}
```
sample.congruence.class.posterior

\[
\begin{align*}
& \text{fc.mean} = 2.0, \\
& \text{min.rate} = 0.0, \\
& \text{max.rate} = 1.0
\end{align*}
\]

return(res)

}

samples <- sample.congruence.class(model,
 num.samples = 8,
 rate.type = "extinction",
 sample.extinction.rates = extinction_rate_samples)

sample.congruence.class.posterior

Stochastic exploration of congruent models for all samples in the posterior

Description

This function takes a posterior sample as input: a list of ACDC objects. It will then iterate over the samples, and for each posterior sample it will sample from the posterior class. It will sample using the \texttt{sample.basic.models} function, and all additional parameters are passed to \texttt{sample.basic.models}.

Usage

sample.congruence.class.posterior(
 posterior,
 num.samples,
 rate.type = "extinction",
 ...
)

Arguments

- \textit{posterior} a list of ACDC model objects
- \textit{num.samples} The pulled diversification rate function (measured in time before present).
- \textit{rate.type} either "extinction", "speciation", or "both"
- ... Arguments passed on to \texttt{sample.basic.models}
- \texttt{times} the time knots
- \texttt{rate0} The rate at present, otherwise drawn randomly.
- \texttt{model} "MRF" for pure MRF model, otherwise MRF has a trend of type "exponential", "linear", or "episodic<n>"
- \texttt{direction} "increase" or "decrease" (measured in past to present)
- \texttt{noisy} If FALSE, no MRF noise is added to the trajectory
- \texttt{MRF.type} "HSMRF" or "GMRF", type for stochastic noise.
monotonic Whether the curve should be forced to always move in one direction.
fc.mean Determines the average amount of change when drawing from the model.
rate0.median When not specified, rate at present is drawn from a lognormal distribution with this median.
rate0.logsd When not specified, rate at present is drawn from a lognormal distribution with this sd
min.rate The minimum rate (rescalingfone after after drawing rates).
max.rate The maximum rate (rescalingfone after after drawing rates).

Value
A named list with congruent rates.

Examples

data(primates_ebd_log)
posterior <- read.RevBayes(primates_ebd_log, max_t = 65, n_samples = 20)
samples <- sample.congruence.class.posterior(posterior,
 num.samples = 20,
 rate.type = "extinction",
 rate0.median = 0.1,
 model = "MRF",
 max.rate = 1.0)

print(samples)
Arguments

- **times**: the time knots
- **lambda0**: The rate at present
- **rsample**: Function to sample next rate
- **rsample0**: Function to sample rate at present
- **autocorrelated**: Should rates be autocorrelated?

Value

Sampled rate vector

Examples

```r
data("primates_ebd")

l <- approxfun(primates_ebd["time"], primates_ebd["lambda"])
mu <- approxfun(primates_ebd["time"], primates_ebd["mu"])
times <- primates_ebd["time"]

model <- create.model(l, mu, times)

rsample <- function(n) runif(n, min = 0.0, max = 0.9)
mu <- sample.rates(times, 0.5, rsample = rsample)

model_set <- congruent.models(model, mus = mu)

model_set
```

summarize.posterior Summarize trends in the posterior

Description

Summarize trends in the posterior

Usage

```r
summarize.posterior(posterior, threshold = 0.01, rate_name = "lambda", return_data = FALSE, rm_singleton = FALSE, relative_deltas = FALSE)
```

Arguments

- **posterior**: a list of ACDC objects, each one representing a sample from the posterior
- **threshold**: a threshold for when $\Delta \lambda_i$ should be interpreted as decreasing, flat, or increasing
- **rate_name**: either "lambda" or "mu" or "delta"
return_data instead of plots, return the plotting dataframes
rm_singleton whether or not to remove singletons. Pass starting at present, going towards ancient
relative_deltas whether to divide $\Delta \lambda_i$ by the local lambda value

Value
 a ggplot object

Examples
 data(primates_ebd_log)
 posterior <- read.RevBayes(primates_ebd_log, max_t = 65, n_samples = 20)
 samples <- sample.congruence.class.posterior(posterior,
 num.samples = 20,
 rate.type = "extinction",
 rate0.median = 0.1,
 model = "MRF",
 max.rate = 1.0)
 p <- summarize.posterior(samples, threshold = 0.05)

summarize.trends Summarize trends in the congruence class

Description
 Summarize trends in the congruence class

Usage
 summarize.trends(model_set, threshold = 0.005, rate_name = "lambda",
 return_data = FALSE, rm.singleton = FALSE, relative_deltas = FALSE, group_names = NULL)

Arguments
 model_set an object of type "ACDCset"
 threshold a threshold for when $\Delta \lambda_i$ should be interpreted as decreasing, flat, or increasing
 rate_name either "lambda" or "mu" or "delta"
 return_data instead of plots, return the plotting dataframes
 rm_singleton whether or not to remove singletons. Pass starting at present, going towards ancient
 relative_deltas whether to divide $\Delta \lambda_i$ by the local lambda value
 group_names a vector of prefixes, if you want to group the models in a facet. For example 'c("reference", "model")'
summarize.trends

Value

a patchwork object

Examples

data(primates_ebd)
lambda <- approxfun(primates_ebd$time, primates_ebd$lambda)
mu <- approxfun(primates_ebd$time, primates_ebd$mu)
times <- seq(0, max(primates_ebd$time), length.out = 500)

reference <- create.model(lambda, mu, times = times)

mus <- list(
 function(t) exp(0.01*t) - 0.01*t - 0.9,
 function(t) exp(-0.02*t) - 0.2,
 function(t) exp(-0.07*t) + 0.02*t - 0.5,
 function(t) 0.2 + 0.01*t,
 function(t) 0.2)

model_set <- congruent.models(reference, mus = mus)

p <- summarize.trends(model_set, 0.02)
Index

* datasets
 primates, 7
 primates_ebd, 7
 primates_ebd_log, 7
 primates_ebd_tess, 8
 primates_ebd_treepar, 8

ACDC (ACDC-package), 2
ACDC-package, 2

congruent.models, 3
create.model, 4

model2df, 5

plot.ACDC, 5
plot.ACDCset, 6
primates, 7
primates_ebd, 7
primates_ebd_log, 7
primates_ebd_tess, 8
primates_ebd_treepar, 8
print.ACDC, 9
print.ACDCposterior, 9
print.ACDCset, 10
print.ACDCsets, 11

read.RevBayes, 11

sample.basic.models, 12, 15
sample.congruence.class, 14
sample.congruence.class.posterior, 15
sample.rates, 16
summarize.posterior, 17
summarize.trends, 18