Package ‘ADMM’

August 8, 2021

Type Package
Title Algorithms using Alternating Direction Method of Multipliers
Version 0.3.3
Description Provides algorithms to solve popular optimization problems in statistics such as regression or denoising based on Alternating Direction Method of Multipliers (ADMM).
License GPL (>= 3)
Encoding UTF-8
Imports Rcpp, Matrix, Rdpack, stats, doParallel, foreach, parallel, utils
LinkingTo Rcpp, RcppArmadillo
RoxygenNote 7.1.1
RdMacros Rdpack
NeedsCompilation yes
Author Kisung You [aut, cre] (<https://orcid.org/0000-0002-8584-459X>), Xiaozhi Zhu [aut]
Maintainer Kisung You <kisungyou@outlook.com>
Repository CRAN
Date/Publication 2021-08-08 04:20:08 UTC

R topics documented:

 ADMM .. 2
 admm.bp ... 2
 admm.enet ... 4
 admm.genalasso 6
 admm.lad .. 8
 admm.lasso .. 10
 admm.rpca .. 12
 admm.sdp ... 13
 admm.spca .. 15
 admm.tv .. 17
Description

An introduction of Alternating Direction Method of Multipliers (ADMM) method has been a breakthrough in solving complex and non-convex optimization problems in a reasonably stable as well as scalable fashion. Our package aims at providing handy tools for fast computation on well-known problems using the method. For interested users/readers, please visit Prof. Stephen Boyd’s website entirely devoted to the topic.

Usage

```r
admm.bp(A, b, xinit = NA, rho = 1, alpha = 1, abstol = 1e-04, reltol = 0.01, maxiter = 1000)
```

Arguments

- `A`: an \((m \times n)\) regressor matrix
- `b`: a length-\(m\) response vector
- `xinit`: a length-\(n\) vector for initial value
- `rho`: an augmented Lagrangian parameter
- `alpha`: an overrelaxation parameter in [1,2]
- `abstol`: absolute tolerance stopping criterion
- `reltol`: relative tolerance stopping criterion
- `maxiter`: maximum number of iterations
Value

- a named list containing
 - x a length-n solution vector
 - history dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

- objval object (cost) function value
- r_norm norm of primal residual
- s_norm norm of dual residual
- eps_pri feasibility tolerance for primal feasibility condition
- eps_dual feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

Examples

```r
## generate sample data
n = 30
m = 10
A = matrix(rnorm(n*m), nrow=m) # design matrix
x = c(stats::rnorm(3),rep(0,n-3)) # coefficient
x = base::sample(x)
b = as.vector(A%*%x) # response

## run example
output = admm.bp(A, b)
niter = length(output$history$s_norm)
history = output$history

## report convergence plot
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
```
Elastic Net Regularization

Description

Elastic Net regularization is a combination of ℓ_2 stability and ℓ_1 sparsity constraint simultaneously solving the following,

$$\min_x \frac{1}{2} \|Ax - b\|_2^2 + \lambda_1 \|x\|_1 + \lambda_2 \|x\|_2^2$$

with nonnegative constraints λ_1 and λ_2. Note that if both lambda values are 0, it reduces to least-squares solution.

Usage

```r
admm.enet(
  A,
  b,
  lambda1 = 1,
  lambda2 = 1,
  rho = 1,
  abstol = 1e-04,
  reltol = 0.01,
  maxiter = 1000
)
```

Arguments

- `A` an $(m \times n)$ regressor matrix
- `b` a length-m response vector
- `lambda1` a regularization parameter for ℓ_1 term
- `lambda2` a regularization parameter for ℓ_2 term
- `rho` an augmented Lagrangian parameter
- `abstol` absolute tolerance stopping criterion
- `reltol` relative tolerance stopping criterion
- `maxiter` maximum number of iterations

Value

a named list containing

- `x` a length-n solution vector
- `history` dataframe recording iteration numerics. See the section for more details.
Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

- **objval** object (cost) function value
- **r_norm** norm of primal residual
- **s_norm** norm of dual residual
- **eps_pri** feasibility tolerance for primal feasibility condition
- **eps_dual** feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both **r_norm** and **s_norm** values become smaller than **eps_pri** and **eps_dual**, respectively.

Author(s)

Xiaozhi Zhu

References

See Also

- **admm.lasso**

Examples

```r
## generate underdetermined design matrix
m = 50
n = 100
p = 0.1 # percentage of non-zero elements

x0 = matrix(Matrix::rsparsematrix(n,1,p))
A = matrix(rnorm(m*n),nrow=m)
for (i in 1:ncol(A)){
  A[,i] = A[,i]/sqrt(sum(A[,i]*A[,i]))
}
b = A*x0 + sqrt(0.001)*matrix(rnorm(m))

## run example with both regularization values = 1
output = admm.enet(A, b, lambda1=1, lambda2=1)
niter = length(output$history$s_norm)
history = output$history

## report convergence plot
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
```
Generalized LASSO

Description

Generalized LASSO is solving the following equation,

$$\min_x \frac{1}{2} \|Ax - b\|^2_2 + \lambda \|Dx\|_1$$

where the choice of regularization matrix D leads to different problem formulations.

Usage

```r
admm.genlasso(
  A,
  b,
  D = diag(length(b)),
  lambda = 1,
  rho = 1,
  alpha = 1,
  abstol = 1e-04,
  reltol = 0.01,
  maxiter = 1000
)
```

Arguments

- **A**: an $(m \times n)$ regressor matrix
- **b**: a length-m response vector
- **D**: a regularization matrix of n columns
- **lambda**: a regularization parameter
- **rho**: an augmented Lagrangian parameter
- **alpha**: an overrelaxation parameter in $[1,2]
- **abstol**: absolute tolerance stopping criterion
- **reltol**: relative tolerance stopping criterion
- **maxiter**: maximum number of iterations
Value

a named list containing

\(\mathbf{x} \), a length-\(n \) solution vector

\texttt{history} dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

\textbf{objval} object (cost) function value

\textbf{r_norm} norm of primal residual

\textbf{s_norm} norm of dual residual

\textbf{eps_pri} feasibility tolerance for primal feasibility condition

\textbf{eps_dual} feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both \(r_norm \) and \(s_norm \) values become smaller than \(\text{eps_pri} \) and \(\text{eps_dual} \), respectively.

Author(s)

Xiaozhi Zhu

References

Examples

```r
## generate sample data
m = 100
n = 200
p = 0.1 # percentage of non-zero elements
x0 = matrix(Matrix::rsparsematrix(n,1,p))
A = matrix(rnorm(m*n),nrow=m)
for (i in 1:ncol(A)){
  A[,i] = A[,i]/sqrt(sum(A[,i]*A[,i]));
}
b = A%*%x0 + sqrt(0.001)*matrix(rnorm(m))
D = diag(n);
## set regularization lambda value
regval = 0.1*Matrix::norm(t(A)%*%b, 'I')
```
solve LASSO via reducing from Generalized LASSO

```r
output = admm.genlasso(A, b, D, lambda=regval) # set D as identity matrix
niter = length(output$history$s_norm)
history = output$history
```

report convergence plot

```r
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
```

admm.lad

Least Absolute Deviations

Description

Least Absolute Deviations (LAD) is an alternative to traditional Least Squares by using cost function

$$\min_x \|Ax - b\|_1$$

to use ℓ_1 norm instead of square loss for robust estimation of coefficient.

Usage

```r
admm.lad(
  A, 
  b, 
  xinit = NA, 
  rho = 1, 
  alpha = 1, 
  abstol = 1e-04, 
  reltol = 0.01, 
  maxiter = 1000
)
```

Arguments

- **A**: an $(m \times n)$ regressor matrix
- **b**: a length-m response vector
- **xinit**: a length-n vector for initial value
- **rho**: an augmented Lagrangian parameter
- **alpha**: an overrelaxation parameter in $[1, 2]$
- **abstol**: absolute tolerance stopping criterion
- **reltol**: relative tolerance stopping criterion
- **maxiter**: maximum number of iterations
Value

- a named list containing
 - `x` a length-`n` solution vector
 - `history` dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

- `objval` object (cost) function value
- `r_norm` norm of primal residual
- `s_norm` norm of dual residual
- `eps_pri` feasibility tolerance for primal feasibility condition
- `eps_dual` feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both `r_norm` and `s_norm` values become smaller than `eps_pri` and `eps_dual`, respectively.

Examples

```r
## generate data
m = 1000
n = 100
A = matrix(rnorm(m*n),nrow=m)
x = 10*matrix(rnorm(n))
b = A%*%x

## add impulsive noise to 10% of positions
idx = sample(1:m, round(m/10))
b[idx] = b[idx] + 100*rnorm(length(idx))

## run the code
output = admm.lad(A,b)
niter = length(output$history$s_norm)
history = output$history

## report convergence plot
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
```
Description

LASSO, or L1-regularized regression, is an optimization problem to solve

$$\min_x \frac{1}{2} \|Ax - b\|^2_2 + \lambda \|x\|_1$$

for sparsifying the coefficient vector x. The implementation is borrowed from Stephen Boyd’s MATLAB code.

Usage

```r
admm.lasso(
  A,  # an (m x n) regressor matrix
  b,  # a length-m response vector
  lambda = 1,  # a regularization parameter
  rho = 1,  # an augmented Lagrangian parameter
  alpha = 1,  # an overrelaxation parameter in [1,2]
  abstol = 1e-04,  # absolute tolerance stopping criterion
  reltol = 0.01,  # relative tolerance stopping criterion
  maxiter = 1000
)
```

Arguments

- `A`: an `(m x n)` regressor matrix
- `b`: a length-`m` response vector
- `lambda`: a regularization parameter
- `rho`: an augmented Lagrangian parameter
- `alpha`: an overrelaxation parameter in `[1,2]`
- `abstol`: absolute tolerance stopping criterion
- `reltol`: relative tolerance stopping criterion
- `maxiter`: maximum number of iterations

Value

- `x`: a length-`n` solution vector
- `history`: dataframe recording iteration numerics. See the section for more details.
Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

- **objval** object (cost) function value
- **r_norm** norm of primal residual
- **s_norm** norm of dual residual
- **eps_pri** feasibility tolerance for primal feasibility condition
- **eps_dual** feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both \(r_{\text{norm}} \) and \(s_{\text{norm}} \) values become smaller than \(\text{eps_pri} \) and \(\text{eps_dual} \), respectively.

References

Examples

```r
## generate sample data
m = 50
n = 100
p = 0.1  # percentage of non-zero elements
x0 = matrix(Matrix::rsparsematrix(n,1,p))
A = matrix(rnorm(m*n),nrow=m)
for (i in 1:ncol(A)){
    A[,i] = A[,i]/sqrt(sum(A[,i]*A[,i]))
}
b = A%*%x0 + sqrt(0.001)*matrix(rnorm(m))

## set regularization lambda value
lambda = 0.1*base::norm(t(A)%*%b, "F")

## run example
output = admm.lasso(A, b, lambda)
niter = length(output$history$s_norm)
history = output$history

## report convergence plot
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(1:niter, history$objval, "b", main="cost function")
plot(1:niter, history$r_norm, "b", main="primal residual")
plot(1:niter, history$s_norm, "b", main="dual residual")
par(opar)
```
Robust Principal Component Analysis

Description

Given a data matrix M, it finds a decomposition

$$\min \|L\|_* + \lambda \|S\|_1 \quad \text{s.t.} \quad L + S = M$$

where $\|L\|_*$ represents a nuclear norm for a matrix L and $\|S\|_1 = \sum |S_{i,j}|$, and λ a balancing/regularization parameter. The choice of such norms leads to impose low-rank property for L and sparsity on S.

Usage

```r
admm.rpca(
  M,
  lambda = 1/sqrt(max(nrow(M), ncol(M))),
  mu = 1,
  tol = 1e-07,
  maxiter = 1000
)
```

Arguments

- `M` an $(m \times n)$ data matrix
- `lambda` a regularization parameter
- `mu` an augmented Lagrangian parameter
- `tol` relative tolerance stopping criterion
- `maxiter` maximum number of iterations

Value

a named list containing

- `L` an $(m \times n)$ low-rank matrix
- `S` an $(m \times n)$ sparse matrix
- `history` dataframe recording iteration numerics. See the section for more details.

Iteration History

For RPCA implementation, we chose a very simple stopping criterion

$$\|M - (L_k + S_k)\|_F \leq tol \ast \|M\|_F$$

for each iteration step k. So for this method, we provide a vector of only relative errors,

- `error` relative error computed
admm.sdp

References

Examples

```r
## generate data matrix from standard normal
X = matrix(rnorm(20*5), nrow=5)

## try different regularization values
out1 = admm.rpca(X, lambda=0.01)
out2 = admm.rpca(X, lambda=0.1)
out3 = admm.rpca(X, lambda=1)

## visualize sparsity
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
image(out1$S, main="lambda=0.01")
image(out2$S, main="lambda=0.1")
image(out3$S, main="lambda=1")
par(opar)
```

admm.sdp

Semidefinite Programming

Description

We solve the following standard semidefinite programming (SDP) problem

\[
\min_X \text{tr}(CX)
\]

s.t. \(A(X) = b, \ X \succeq 0\)

with \(A(X)_i = \text{tr}(A_i^\top X) = b_i\) for \(i = 1, \ldots, m\) and \(X \succeq 0\) stands for positive-definiteness of the matrix \(X\). In the standard form, matrices \(C, A_1, A_2, \ldots, A_m\) are symmetric and solution \(X\) would be symmetric and positive semidefinite. This function implements alternating direction augmented Lagrangian methods.

Usage

```r
admm.sdp(
    C,
    A,
    b,
    mu = 1,
    rho = 1,
    abstol = 1e-10,
    maxiter = 496,
    print.progress = FALSE
)
```
Arguments

- **C** an \((n \times n)\) symmetric matrix for cost.
- **A** a length-\(m\) list of \((n \times n)\) symmetric matrices for constraint.
- **b** a length-\(m\) vector for equality condition.
- **mu** penalty parameter; positive real number.
- **rho** step size for updating in \((0, \frac{1+\sqrt{5}}{2})\).
- **abstol** absolute tolerance stopping criterion.
- **maxiter** maximum number of iterations.
- **print.progress** a logical; TRUE to show the progress, FALSE to go silent.

Value

- a named list containing
 - **x** a length-\(n\) solution vector
 - **history** dataframe recording iteration numerics. See the section for more details.

Iteration History

When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

- **objval** object (cost) function value
- **eps_pri** feasibility tolerance for primal feasibility condition
- **eps_dual** feasibility tolerance for dual feasibility condition
- **gap** gap between primal and dual cost function.

We use the stopping criterion which breaks the iteration when all **eps_pri**, **eps_dual**, and **gap** become smaller than **abstol**.

Author(s)

Kisung You

References

Examples

a toy example

generate parameters

```r
C = matrix(c(1,2,3,2,9,0,3,0,7),nrow=3,byrow=TRUE)
A1 = matrix(c(1,0,1,0,3,7,1,7,5),nrow=3,byrow=TRUE)
A2 = matrix(c(0,2,8,2,6,0,8,0,4),nrow=3,byrow=TRUE)
```

```r
A = list(A1, A2)
b = c(11, 19)
```

run the algorithm

```r
run = admm.sdp(C,A,b)
hst = run$history
```

visualize

```r
opar <- par(no.readonly=TRUE)
par(mfrow=c(2,2))
plot(hst$objval, type="b", cex=0.25, main="objective value")
plot(hst$eps_pri, type="b", cex=0.25, main="primal feasibility")
plot(hst$eps_dual, type="b", cex=0.25, main="dual feasibility")
plot(hst$gap, type="b", cex=0.25, main="primal-dual gap")
par(opar)
```

Not run:

comparison with CVXR’s result

```r
require(CVXR)
```

problems definition

```r
X = Variable(3,3,PSD=TRUE)
myobj = Minimize(sum_entries(C*X)) # objective
mycon = list(  # constraint
    sum_entries(A[[1]]*X) == b[1],
    sum_entries(A[[2]]*X) == b[2]
)
myp = Problem(myobj, mycon) # problem
```

run and visualize

```r
res = solve(myp)
Xsol = res$getValue(X)
```

```r
opar = par(no.readonly=TRUE)
par(mfrow=c(1,2), pty="s")
image(run$X, axes=FALSE, main="ADMM result")
image(Xsol, axes=FALSE, main="CVXR result")
par(opar)
```

End(Not run)
Description
Sparse Principal Component Analysis aims at finding a sparse vector by solving
\[
\max_x x^T \Sigma x \quad \text{s.t.} \quad \|x\|_2 \leq 1, \|x\|_0 \leq K
\]
where \(\|x\|_0\) is the number of non-zero elements in a vector \(x\). A convex relaxation of this problem was proposed to solve the following problem,
\[
\max_X <\Sigma, X> \quad \text{s.t.} \quad Tr(X) = 1, \|X\|_0 \leq K^2, X \geq 0, \text{rank}(X) = 1
\]
where \(X = xx^T\) is a \((p \times p)\) matrix that is outer product of a vector \(x\) by itself, and \(X \geq 0\) means the matrix \(X\) is positive semidefinite. With the rank condition dropped, it can be restated as
\[
\max_X <\Sigma, X> - \rho \|X\|_1 \quad \text{s.t.} \quad Tr(X) = 1, X \geq 0.
\]
After acquiring each principal component vector, an iterative step based on Schur complement deflation method is applied to regress out the impact of previously-computed projection vectors. It should be noted that those sparse basis may not be orthonormal.

Usage
\[
\text{admm.spca}(\Sigma, \text{numpc}, \mu = 1, \rho = 1, \text{abstol} = 1e^{-04}, \text{reitol} = 0.01, \text{maxiter} = 1000)
\]

Arguments
\[
\Sigma \quad \text{a (p \times p) (sample) covariance matrix.}
\]
\[
\text{numpc} \quad \text{number of principal components to be extracted.}
\]
\[
\mu \quad \text{an augmented Lagrangian parameter.}
\]
\[
\rho \quad \text{a regularization parameter for sparsity.}
\]
\[
\text{abstol} \quad \text{absolute tolerance stopping criterion.}
\]
\[
\text{reitol} \quad \text{relative tolerance stopping criterion.}
\]
\[
\text{maxiter} \quad \text{maximum number of iterations.}
\]

Value
\[
a \text{named list containing}
\]
\[
\text{basis} \quad \text{a (p \times numpc) matrix whose columns are sparse principal components.}
\]
\[
\text{history} \quad \text{a length-numpc list of dataframes recording iteration numerics. See the section for more details.}
\]
Iteration History

For SPCA implementation, main computation is sequentially performed for each projection vector. The history field is a list of length numpc, where each element is a data frame containing iteration history recording following fields over iterates,

- **r_norm** norm of primal residual
- **s_norm** norm of dual residual
- **eps_pri** feasibility tolerance for primal feasibility condition
- **eps_dual** feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.

References

Examples

```r
## generate a random matrix and compute its sample covariance
X = matrix(rnorm(1000*5),nrow=1000)
covX = stats::cov(X)

## compute 3 sparse basis
output = admm.spca(covX, 3)
```

Total Variation Minimization

Description

1-dimensional total variation minimization - also known as signal denoising - is to solve the following

\[
\min_x \frac{1}{2} \|x - b\|_2^2 + \lambda \sum_i |x_{i+1} - x_i|
\]

for a given signal b. The implementation is borrowed from Stephen Boyd’s MATLAB code.
Usage
admm.tv(
 b,
 lambda = 1,
 xinit = NA,
 rho = 1,
 alpha = 1,
 abstol = 1e-04,
 reltol = 0.01,
 maxiter = 1000
)

Arguments
b a length-m response vector
lambda regularization parameter
xinit a length-m vector for initial value
rho an augmented Lagrangian parameter
alpha an overrelaxation parameter in [1, 2]
abstol absolute tolerance stopping criterion
reltol relative tolerance stopping criterion
maxiter maximum number of iterations

Value
a named list containing

x a length-m solution vector

history dataframe recording iteration numerics. See the section for more details.

Iteration History
When you run the algorithm, output returns not only the solution, but also the iteration history recording following fields over iterates,

objval object (cost) function value
r_norm norm of primal residual
s_norm norm of dual residual
eps_pri feasibility tolerance for primal feasibility condition
eps_dual feasibility tolerance for dual feasibility condition

In accordance with the paper, iteration stops when both r_norm and s_norm values become smaller than eps_pri and eps_dual, respectively.
Examples

generate sample data

\[x_1 = \text{as.vector}(\sin(1:100)+0.1*\text{rnorm}(100)) \]
\[x_2 = \text{as.vector}(\cos(1:100)+0.1*\text{rnorm}(100)+5) \]
\[x_3 = \text{as.vector}(\sin(1:100)+0.1*\text{rnorm}(100)+2.5) \]
\[x_{\text{signal}} = c(x_1,x_2,x_3) \]

run example

\[\text{output} = \text{admm.tv}(x_{\text{signal}}) \]

visualize

\[\text{opar} \leftarrow \text{par(no.readonly=TRUE)} \]
\[\text{plot}(1:300, x_{\text{signal}}, \text{type}="l", \text{main}="TV Regularization") \]
\[\text{lines}(1:300, \text{outputx, col}="red", \text{lwd}=2) \]
\[\text{par(opar)} \]
Index

ADMM, 2
ADMM-package (ADMM), 2
admm.bp, 2
admm.enet, 4
admm.genlasso, 6
admm.lad, 8
admm.lasso, 5, 10
admm.rpc a, 12
admm.sdp, 13
admm.spca, 15
admm.tv, 17