Package ‘AnchorRegression’
January 6, 2021

Type Package
Title Perform AnchorRegression
Version 0.1.3
Author Simon Zimmermann
Maintainer Simon Zimmermann <zimmersi@hu-berlin.de>
Description Performs AnchorRegression proposed by Rothenhäusler et al. 2020.
The code is adapted from the original paper repository. (<https://github.com/rothenhaeusler/anchor-regression>)
The code was developed independently from the authors of the paper.
License MIT + file LICENSE
URL https://github.com/simzim96/AnchorRegression
BugReports https://github.com/simzim96/AnchorRegression/issues
Depends R (>= 2.0.0)
Imports glmnet (>= 1.4), selectiveInference (>= 1.0.0), mgcv (>= 1.0)
Encoding UTF-8
RoxygenNote 7.1.1
Suggests knitr, rmarkdown, testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2021-01-06 14:40:02 UTC

R topics documented:

anchor_prediction ... 2
anchor_prediction_gam ... 2
anchor_regression ... 3
anchor_regression_gam ... 4
anchor_stability ... 5
weighted_anchor_prediction 6
weighted_anchor_regression 7

Index 9
anchor_prediction

Description

Perform a prediction for an Anchor Regression model as described in Rothenhäusler et al. 2020

Usage

anchor_prediction(anchor_model, x, anchor, gamma, target_variable)

Arguments

- anchor_model: is the Anchor Regression model object
- x: is a dataframe containing the matrix x containing the independent variables
- anchor: is a dataframe containing the matrix anchor containing the anchor variable
- gamma: is the regularization parameter for the Anchor Regression
- target_variable: is the target variable name contained in the x dataframe

Value

A list of predictions.

Examples

```r
x <- as.data.frame(matrix(data = rnorm(100), nrow = 100, ncol = 10))
anchor <- as.data.frame(matrix(data = rnorm(200), nrow = 100, ncol = 2))
colnames(anchor) <- c('X1', 'X2')
gamma <- 2
target_variable <- 'V2'
anchor_model <- anchor_regression(x, anchor, gamma, target_variable)
anchor_prediction(anchor_model$model, x, anchor, gamma, target_variable)
```
Usage

anchor_prediction_gam(
 anchor_model, x, anchor, gamma, target_variable, bin_factor
)

Arguments

anchor_model is the Anchor Regression model object
x is a dataframe containing the matrix x containing the independent variables
anchor is a dataframe containing the matrix anchor containing the anchor variable
gamma is the regularization parameter for the Anchor Regression
target_variable is the target variable name contained in the x dataframe
bin_factor binary variable that can be transformed to a factor to partial out effects

Value

A list of predictions.

Examples

x <- as.data.frame(matrix(data = rnorm(10000), nrow = 1000, ncol = 10))
x$bin <- sample(nrow(x), x = c(1,0), prob = c(0.5,0.5), replace = TRUE)
anchor <- as.data.frame(matrix(data = rnorm(2000), nrow = 1000, ncol = 2))
colnames(anchor) <- c('X1', 'X2')
gamma <- 2
target_variable <- 'V2'

anchor_model <- anchor_regression_gam(x, anchor, gamma, target_variable, 'bin')
anchor_prediction_gam(anchor_model$model, x, anchor, gamma, target_variable, 'bin')

anchor_regression

Description

Perform an Anchor Regression as described in Rothenhausler et al.2020

Usage

anchor_regression(x, anchor, gamma, target_variable, lambda = "CV")
anchor_regression_gam

Arguments

- **x** is a dataframe containing the matrix x containing the independent variables.
- **anchor** is a dataframe containing the matrix anchor containing the anchor variable.
- **gamma** is the regularization parameter for the Anchor Regression.
- **target_variable** is the target variable name contained in the x dataframe.
- **lambda** indicates the lambda that is used in the Anchor Regression. 'CV' is used if it should be estimated by cross validation on the full subset.

Value

A list with coefficient values and a list with the respective names overview_print. Additionally, the transformed data as x and y plus the fixed lambda coefficient.

Examples

```r
x <- as.data.frame(matrix(data = rnorm(1000), nrow = 100, ncol = 10))
anchor <- as.data.frame(matrix(data = rnorm(200), nrow = 100, ncol = 2))
colnames(anchor) <- c('X1', 'X2')
gamma <- 2
target_variable <- 'V2'
anchor_regression(x, anchor, gamma, target_variable)
```

anchor_regression_gam

Description

Perform an Generalized Additive Anchor Regression.

Usage

```r
anchor_regression_gam(x, anchor, gamma, target_variable, bin_factor = NULL)
```

Arguments

- **x** is a dataframe containing the matrix x containing the independent variables.
- **anchor** is a dataframe containing the matrix anchor containing the anchor variable.
- **gamma** is the regularization parameter for the Anchor Regression.
- **target_variable** is the target variable name contained in the x dataframe.
- **bin_factor** binary variable that can be transformed to a factor to partial out effects.

Value

A list with coefficient values and a list with the respective names overview_print. Additionally, the transformed data as x and y plus the fixed lambda coefficient.
anchor_stability

Examples

```r
x <- as.data.frame(matrix(data = rnorm(10000), nrow = 1000, ncol = 10))
x$bin <- sample(nrow(x), x = c(1, 0), prob = c(0.5, 0.5), replace = TRUE)
anchor <- as.data.frame(matrix(data = rnorm(2000), nrow = 1000, ncol = 2))
colnames(anchor) <- c('X1', 'X2')
gamma <- 2
target_variable <- 'V2'
anchor_regression_gam(x, anchor, gamma, target_variable, bin_factor = "bin")
```

anchor_stability anchor_stability

Description

Perform an Anchor Stability Analysis as described in Rothenhäusler et al. 2020

Usage

```r
anchor_stability(
  x,
  anchor,
  target_variable,
  lambda = 0,
  alpha = 0.05,
  p_procedure = "naive"
)
```

Arguments

- `x` is a dataframe containing the matrix x containing the independent variables
- `anchor` is a dataframe containing the matrix anchor containing the anchor variable
- `target_variable` is the target variable name contained in the x dataframe
- `lambda` indicates the lambda that is used in the Anchor Regression. ‘CV’ is used if it should be estimated by cross validation on the full subset.
- `alpha` significance level for test decision on coefficient significance
- `p_procedure` procedure to estimate stability. Option 1: naive - stable if effect is non-zero in all cases; Option 2: post-lasso - post selection inference using SelectiveInference package

Value

A dataframe containing the stability values for each coefficient
Examples

```r
# number of observed environments
environments <- 10

# populate list with generated data of x and anchor
data_x_list <- c()
data_anchor_list <- c()
for(e in 1:environments){
  x <- as.data.frame(matrix(data = rnorm(100),nrow = 100,ncol = 10))
  anchor <- as.data.frame(matrix(data = rnorm(200),nrow = 100,ncol = 2))
  colnames(anchor) <- c('X1','X2')
gamma <- 2
target_variable <- 'V2'
anchor_stability(x, anchor, target_variable, lambda, alpha=0.05, p_procedure = "naive")
```

Description

Perform a prediction for a Weighted Anchor Regression model

Usage

```r
weighted_anchor_prediction(names, coeff, x, anchor, gamma, target_variable)
```

Arguments

- **names**: list of variable names corresponding to the coefficients in `coeff`
- **coeff**: list of coefficients corresponding to the coefficients in `names`
- **x**: is a dataframe containing the matrix `x` containing the independent variables
- **anchor**: is a dataframe containing the matrix anchor containing the anchor variable
- **gamma**: is the regularization parameter for the Anchor Regression
- **target_variable**: is the target variable name contained in the `x` dataframe

Value

A list of predictions.

Examples

```r
# number of observed environments
environments <- 10

# populate list with generated data of x and anchor
data_x_list <- c()
data_anchor_list <- c()
for(e in 1:environments){
  x <- as.data.frame(matrix(data = rnorm(100),nrow = 100,ncol = 10))
  anchor <- as.data.frame(matrix(data = rnorm(200),nrow = 100,ncol = 2))
  colnames(anchor) <- c('X1','X2')
gamma <- 2
target_variable <- 'V2'
anchor_stability(x, anchor, target_variable, lambda, alpha=0.05, p_procedure = "naive")
```
weighted_anchor_regression

 data_anchor_list[[e]] <- anchor

estimate model
gamma <- 2
target_variable <- 'V2'
weighted_anchor_model <- weighted_anchor_regression(data_x_list,
 data_anchor_list,
 gamma,
 target_variable,
 anchor_model_pre=NULL,
 test_split=0.4,
 lambda=0)

weighted_anchor_prediction(weighted_anchor_model$names,
 weighted_anchor_model$coeff,
 x,
 anchor,
 gamma,
 target_variable)

Description

Estimates weighted Anchor Regression coefficients

Usage

```r
weighted_anchor_regression(
    data_x_list,
    data_anchor_list,
    gamma,
    target_variable,
    anchor_model_pre = NULL,
    test_split = 0.4,
    lambda = 0
)
```

Arguments

- `data_x_list` : list containing coefficient dataframes for different environments
- `data_anchor_list` : list containing anchor dataframes for different environments
- `gamma` : is the regularization parameter for the Anchor Regression
- `target_variable` : is the target variable name contained in the x dataframe
weighted_anchor_regression

anchor_model_pre

is the pre estimated model for the Anchor Regression. In case of NULL a new model is estimated.

test_split

is desired test/train split for the estimation

lambda

penalization coefficient for Anchor Shrinkage. Initially set to 0.

Value

A list estimated coefficients with names, weights and the raw coefficient matrix

Examples

environments <- 10 # number of observed environments

populate list with generated data of x and anchor
data_x_list <- c()
data_anchor_list <- c()
for(e in 1:environments){
 x <- as.data.frame(matrix(data = rnorm(100),nrow = 100,ncol = 10))
 anchor <- as.data.frame(matrix(data = rnorm(200),nrow = 100,ncol = 2))
 colnames(anchor) <- c('X1','X2')
 data_x_list[[e]] <- x
 data_anchor_list[[e]] <- anchor
}

estimate model

gamma <- 2
target_variable <- 'V2'
weighted_anchor_regression(data_x_list, data_anchor_list, gamma, target_variable, anchor_model_pre=NULL, test_split=0.4, lambda=0)
Index

anchor_prediction, 2
anchor_prediction_gam, 2
anchor_regression, 3
anchor_regression_gam, 4
anchor_stability, 5

weighted_anchor_prediction, 6
weighted_anchor_regression, 7