Package ‘BayesBinMix’

October 12, 2022

Type Package
Title Bayesian Estimation of Mixtures of Multivariate Bernoulli Distributions
Version 1.4.1
Date 2017-07-04
Author Panagiotis Papastamoulis
Maintainer Panagiotis Papastamoulis <papapast@yahoo.gr>
Description Fully Bayesian inference for estimating the number of clusters and related parameters to heterogeneous binary data.
Imports label.switching, foreach, doParallel, coda
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2017-07-04 10:15:01 UTC

R topics documented:

BayesBinMix-package .. 2
allocationSamplerBinMix 3
collapsedGibbsBinMix .. 5
complete.loglikelihood ... 6
coupledMetropolis ... 7
dealWithLabelSwitching .. 10
dealWithLabelSwitchingMissing 11
gibbsBinMix .. 12
myDirichlet .. 13
print.bbm.object ... 14
toSolve .. 14

Index .. 16
BayesBinMix-package

Bayesian Estimation of Mixtures of Multivariate Bernoulli Distributions

Description

Fully Bayesian inference for estimating the number of clusters and related parameters to heterogeneous binary data.

Details

This package can be used in order to cluster multivariate binary data (NAs are allowed). The main function of the package is `coupledMetropolis`.

The input is an $n \times d$ binary array where n and d denote the number of observations and dimension of the data. The underlying model is a mixture of independent multivariate Bernoulli distributions with an unknown number of components:

$$
 x_i \sim \sum_{k=1}^{K} \pi_k \prod_{j=1}^{d} f(x_{ij}; \theta_{kj}),
$$

with $x_i = (x_{i1}, \ldots, x_{id})$; $d > 1$, independent for $i = 1, \ldots, n$. The term $f(x_{ij}; \theta_{kj})$ denotes the probability density function of the Bernoulli distribution with parameter $\theta_{kj} \in (0, 1)$. The number of clusters K is a random variable with support $\{1, \ldots, K_{\text{max}}\}$, where K_{max} is an upper bound for the number of clusters. The model uses the following prior assumptions:

$$
 K \sim \text{discrete}\{1, \ldots, K_{\text{max}}\}
$$

$$
 (\pi_1, \ldots, \pi_K)|K \sim \text{Dirichlet}(\gamma, \ldots, \gamma)
$$

$$
 \theta_{kj}|K \sim \text{Beta}(\alpha, \beta); \quad \text{independent for} \quad k = 1, \ldots, K; j = 1, \ldots, d.
$$

The discrete distribution on the number of clusters it can be a truncated Poisson(1) or Uniform distribution. The model uses data augmentation by also considering the (latent) allocation variable z_i, which a priori assigns observation i to cluster $k = 1, \ldots, K$ with probability $P(z_i = k|K, \pi_1, \ldots, \pi_K) = \pi_k$ independently for $i = 1, \ldots, n$.

In order to infer the parameters of the model, a Markov chain Monte Carlo (MCMC) approach is adopted. Given K, the component-specific parameters π_k and θ_{kj} are integrated out and a collapsed allocation sampler which also updates the number of clusters (Nobile and Fearnside, 2007) is implemented. In the case that the observed data contains missing values, the algorithm simulates their values from the corresponding full conditional distribution. In order to improve the mixing of the simulated chain, a Metropolis-coupled MCMC sampler (Altekar et al., 2004) is incorporated. In particular, various heated chains are run in parallel and swaps are proposed between pairs of chains. The number of chains should be equal to the number of available cores. Each chain runs in parallel using the packages `foreach` and `doParallel`.

After inferring the most probable number of clusters, the simulated parameters which correspond to this specific value of K are post-processed in order to undo the label switching problem. For this purpose the `label.switching` package (Papastamoulis, 2016; see also Papastamoulis and Iliopoulos 2010, 2013 and Papastamoulis, 2014) is used.
allocationSamplerBinMix

Author(s)
Panagiotis Papastamoulis
Maintainer: Panagiotis Papastamoulis

References

See Also
coupledMetropolis

Description
This function implements the collapsed allocation sampler of Nobile and Fearnside (2007) at the context of mixtures of multivariate Bernoulli distributions.

Usage
allocationSamplerBinMix(Kmax, alpha, beta, gamma, m, burn, data, thinning, z.true, ClusterPrior, ejectionAlpha, Kstart, outputDir, metropolisMoves, reorderModels, heat, zStart, LS, rsX, originalX, printProgress)
Arguments

- **Kmax**: Maximum number of clusters (integer, at least equal to two).
- **alpha**: First shape parameter of the Beta prior distribution (strictly positive). Defaults to 1.
- **beta**: Second shape parameter of the Beta prior distribution (strictly positive). Defaults to 1.
- **gamma**: Kmax-dimensional vector (positive) corresponding to the parameters of the Dirichlet prior of the mixture weights. Default value: \(\text{rep}(1, K_{\text{max}}) \).
- **m**: Number of MCMC iterations.
- **burn**: The number of initial MCMC iterations that will be discarded as burn-in period.
- **data**: Binary data array (NAs not allowed here).
- **thinning**: Integer that defines a thinning of the reported MCMC sample. Under the default setting, every 5th MCMC iteration is saved.
- **z.true**: An optional vector of cluster assignments considered as the ground-truth clustering of the observations. Useful for simulations.
- **ClusterPrior**: Character string specifying the prior distribution of the number of clusters on the set \(\{1, \ldots, K_{\text{max}}\} \). Available options: poisson or uniform. It defaults to the truncated Poisson distribution.
- **ejectionAlpha**: Probability of ejecting an empty component. Defaults to 0.2.
- **Kstart**: Initial value for the number of clusters. Defaults to 1.
- **outputDir**: The name of the produced output folder.
- **metropolisMoves**: A vector of character strings with possible values M1, M2, M3, M4. Each entry specifies Metropolis-Hastings type moves on the latent allocation variables.
- **reorderModels**: Character string specifying whether to post-process the MCMC sample of each distinct generated value of K. The default setting is onlyMAP and in this case only the part of the MCMC sample that corresponds to the most probable number of clusters is reordered.
- **heat**: The temperature of the simulated chain, that is, a scalar in the set \((0, 1] \).
- **zStart**: n-dimensional integer vector of latent allocations to initialize the sampler.
- **LS**: Boolean indicating whether to post-process the MCMC sample using the label switching algorithms.
- **rsX**: Optional vector containing the row-sums of the observed data (NAs are allowed). It is required only in the case of missing values.
- **originalX**: Optional array containing the observed data (containing NAs). It is required only in the case of missing values.
- **printProgress**: Logical, indicating whether to print the progress of the sampler or not. Default: FALSE.

Details

The output is reordered according to the following label-switching solving algorithms: ECR, ECR-ITERATIVE-1 and STEPHENS. In most cases the results of these different algorithms are identical.
Note

This function is recursively called inside the `coupledMetropolis` function. There is no need to call it separately.

Author(s)

Panagiotis Papastamoulis

References

See Also

`coupledMetropolis`

Description

This function applied collapsed Gibbs sampling assuming that the number of mixture components is known.

Usage

```r
collapsedGibbsBinMix(alpha, beta, gamma, K, m, burn, data, thinning, z.true, outputDir)
```
Arguments

- **alpha**: First shape parameter of the Beta prior distribution (strictly positive). Defaults to 1.
- **beta**: Second shape parameter of the Beta prior distribution (strictly positive). Defaults to 1.
- **gamma**: K-dimensional vector (positive) corresponding to the parameters of the Dirichlet prior of the mixture weights. Default value: \(\text{rep}(1, K) \).
- **K**: Number of clusters.
- **m**: Number of MCMC iterations.
- **burn**: The number of initial MCMC iterations that will be discarded as burn-in period.
- **data**: Binary data array.
- **thinning**: Integer that defines a thinning of the reported MCMC sample. Under the default setting, every 5th MCMC iteration is saved.
- **z.true**: An optional vector of cluster assignments considered as the ground-truth clustering of the observations. Useful for simulations.
- **outputDir**: The name of the produced output folder.

Note

Not really used.

Author(s)

Panagiotis Papastamoulis

Description

Returns the complete log-likelihood of the mixture.

Usage

\[
\text{complete.loglikelihood}(x, z, \text{pars})
\]

Arguments

- **x**: Binary data.
- **z**: Latent allocations vector.
- **pars**: Parameters of the mixture.
Value
Complete log-likelihood value.

Author(s)
Panagiotis Papastamoulis

coupledMetropolis Metropolis-coupled Markov chain Monte Carlo sampler

Description
Main function of the package. The algorithm consists of the allocation sampler combined with a MC3 scheme.

Usage
coupledMetropolis(Kmax, nChains, heats, binaryData, outPrefix, ClusterPrior, m, alpha, beta, gamma, z.true, ejectionAlpha, burn)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kmax</td>
<td>Maximum number of clusters (integer, at least equal to two).</td>
</tr>
<tr>
<td>nChains</td>
<td>Number of parallel (heated) chains. Ideally, it should be equal to the number of available threads.</td>
</tr>
<tr>
<td>heats</td>
<td>nChains-dimensional vector specifying the temperature of each chain: the 1st entry should always be equal to 1 and the rest of them lie on the set: ((0, 1]).</td>
</tr>
<tr>
<td>binaryData</td>
<td>The observed binary data (array). Missing values are allowed as long as the corresponding entries are denoted as NA.</td>
</tr>
<tr>
<td>outPrefix</td>
<td>The name of the produced output folder. An error is thrown if the directory exists.</td>
</tr>
<tr>
<td>ClusterPrior</td>
<td>Character string specifying the prior distribution of the number of clusters on the set ({1, \ldots, K_{max}}). Available options: poisson or uniform. It defaults to the truncated Poisson distribution.</td>
</tr>
<tr>
<td>m</td>
<td>The number of MCMC cycles. At the end of each cycle a swap between a pair of heated chains is attempted. Each cycle consists of 10 iterations.</td>
</tr>
<tr>
<td>alpha</td>
<td>First shape parameter of the Beta prior distribution (strictly positive). Defaults to 1.</td>
</tr>
<tr>
<td>beta</td>
<td>Second shape parameter of the Beta prior distribution (strictly positive). Defaults to 1.</td>
</tr>
<tr>
<td>gamma</td>
<td>Kmax-dimensional vector (positive) corresponding to the parameters of the Dirichlet prior of the mixture weights. Default value: rep(1,Kmax).</td>
</tr>
<tr>
<td>z.true</td>
<td>An optional vector of cluster assignments considered as the ground-truth clustering of the observations. Useful for simulations.</td>
</tr>
</tbody>
</table>
ejectionAlpha Probability of ejecting an empty component. Defaults to 0.2.
burn Optional integer denoting the number of MCMC cycles that will be discarded as burn-in period.

Details
In the case that the most probable number of clusters is larger than 1, the output is post-processed using the label.switching package. In addition to the objects returned to the user (see value below), the complete output of the sampler is written to the directory outPrefix. It consists of the following files:

- K.allChains.txt $m \times nChains$ matrix containing the simulated values of the number of clusters (K) per chain.
- K.txt the m simulated values of the number of clusters (K) of the cold chain (posterior distribution).
- p.varK.txt the simulated values of the mixture weights (not identifiable).
- rawMCMC.mapK.KVALUE.txt the raw MCMC output which corresponds to the most probable model (not identifiable).
- reorderedMCMC-ECR-ITERATIVE1.mapK.KVALUE.txt the reordered MCMC output which corresponds to the most probable model, reordered according to the ECR-ITERATIVE-1 algorithm.
- reorderedMCMC-ECR.mapK.KVALUE.txt the reordered MCMC output which corresponds to the most probable model, reordered according to the ECR algorithm.
- reorderedMCMC-STEPHENS.mapK.KVALUE.txt the reordered MCMC output which corresponds to the most probable model, reordered according to the STEPHENS algorithm.
- reorderedSingleBestClusterings.mapK.KVALUE.txt the most probable allocation of each observation after reordering the MCMC sample which corresponds to the most probable number of clusters.
- theta.varK.txt the simulated values of Bernoulli parameters (not identifiable).
- z-ECR-ITERATIVE1.mapK.KVALUE.txt the reordered simulated latent allocations which corresponds to the most probable model, reordered according to the ECR-ITERATIVE-1 algorithm.
- z-ECR.mapK.KVALUE.txt the reordered simulated latent allocations which corresponds to the most probable model, reordered according to the ECR algorithm.
- z-KL.mapK.KVALUE.txt the reordered simulated latent allocations which corresponds to the most probable model, reordered according to the STEPHENS algorithm.
- z.varK.txt the simulated latent allocations (not identifiable).
- classificationProbabilities.mapK.KVALUE.csv the reordered classification probabilities per observation after reordering the most probable number of clusters with the ECR algorithm.
- xEstimated.txt Observed data with missing values estimated by their posterior mean estimate. This file is produced only in the case that the observed data contains missing values.

KVALUE will be equal to the inferred number of clusters. Note that the label switching part is omitted in case that the most probable number of clusters is equal to 1.
Value

The basic output of the sampler is returned to the following R objects:

- `K.mcmc` object of class `mcmc` (see `coda` package) containing the simulated values (after burn-in) of the number of clusters for the cold chain.
- `parameters.ecr.mcmc` object of class `mcmc` (see `coda` package) containing the simulated values (after burn-in) of θ_{kj} (probability of success per cluster k and feature j) and π_k (weight of cluster k) for $k = 1, \ldots, K_{\text{map}}$; $j = 1, \ldots, d$, where K_{map} denotes the most probable number of clusters. The output is reordered according to ECR algorithm.
- `allocations.ecr.mcmc` object of class `mcmc` (see `coda` package) containing the simulated values (after burn-in) of z_{kj} (allocation variables) for $k = 1, \ldots, K_{\text{map}}$, $j = 1, \ldots, d$. The output is reordered according to ECR algorithm.
- `classificationProbabilities.ecr` data frame of the reordered classification probabilities per observation after reordering the most probable number of clusters with the ECR algorithm.
- `clusterMembershipPerMethod` data frame of the most probable allocation of each observation after reordering the MCMC sample which corresponds to the most probable number of clusters according to ECR, STEPHENS and ECR-ITERATIVE-1 methods.
- `K.allChains` $m \times n_{\text{Chains}}$ matrix containing the simulated values of the number of clusters (K) per chain.
- `chainInfo` Number of cycles, burn-in period and acceptance rate of swap moves.

Author(s)

Panagiotis Papastamoulis

References

Examples

```r
#generate dataset from a mixture of 2 ten-dimensional Bernoulli distributions.
set.seed(1)
d <- 10  # number of columns
n <- 50  # number of rows (sample size)
K <- 2   # true number of clusters
p.true <- myDirichlet(rep(10, K))  # true weight of each cluster
z.true <- numeric(n)  # true cluster membership
z.true <- sample(K, n, replace=TRUE, prob = p.true)
#true probability of positive responses per cluster:
theta.true <- array(data = NA, dim = c(K, d))
for(j in 1:d){
  theta.true[,j] <- rbeta(K, shape1 = 1, shape2 = 1)
}
x <- array(data=NA,dim = c(n,d))  # data: n X d array
for(k in 1:K){
  myIndex <- which(z.true == k)
  for (j in 1:d){
    x[myIndex,j] <- rbinom(n = length(myIndex), size = 1, prob = theta.true[k,j])
  }
}

# number of heated paralleled chains
nChains <- 2
heats <- seq(1,0.8,length = nChains)
# Not run:
cm <- coupledMetropolis(Kmax = 10,nChains = nChains,heats = heats,
  binaryData = x, outPrefix = 'BayesBinMixExample',
  ClusterPrior = 'poisson', m = 1100, burn = 100)
# print summary using:
print(cm)
```

It is also advised to use `z.true = z.true` in order to directly compare with
the true values. In general it is advised to use at least 4 chains with
heats <- seq(1,0.3,length = nChains)

dealWithLabelSwitching

Label switching algorithms

Description

This is a wrapper for the `label.switching` package. It is used to post-process the generated
MCMC sample in order to undo the label switching problem. This function is called internally to
the `coupledMetropolis` command.
dealWithLabelSwitchingMissing

Usage

deadWithLabelSwitching(outDir, reorderModels, binaryData, z.true)

Arguments

outDir The directory where the output of coupledMetropolis was previously produced.
reorderModels Boolean value indicating whether to reorder the MCMC corresponding to each distinct generated value of number of clusters or not.
binaryData The input data.
z.true An optional vector of cluster assignments considered as the ground-truth clustering of the observations. Useful for simulations.

Details

See the label.switching package.

Author(s)

Panagiotis Papastamoulis

References

Usage

dealWithLabelSwitchingMissing(outDir, reorderModels, binaryData, z.true)

Arguments

outDir The directory where the output of coupledMetropolis was previously produced.
reorderModels Boolean value indicating whether to reorder the MCMC corresponding to each distinct generated value of number of clusters or not.
binaryData The input data.
z.true An optional vector of cluster assignments considered as the ground-truth clustering of the observations. Useful for simulations.

Details

See the label.switching package.

Author(s)

Panagiotis Papastamoulis

References

gibbsBinMix

Standard Gibbs sampler

Description

This function implements full Gibbs sampling to simulate an MCMC sample from the posterior distribution assuming known number of mixture components.

Usage

gibbsBinMix(alpha, beta, gamma, K, m, burn, data, thinning, z.true, outputDir)
Arguments

alpha First shape parameter of the Beta prior distribution (strictly positive). Defaults to 1.
beta Second shape parameter of the Beta prior distribution (strictly positive). Defaults to 1.
gamma Kmax-dimensional vector (positive) corresponding to the parameters of the Dirichlet prior of the mixture weights. Default value: rep(1, Kmax).
K Number of clusters.
m Number of MCMC iterations.
burn Burn-in period.
data Binary data.
thinning Thinning of the simulated chain.
z.true An optional vector of cluster assignments considered as the ground-truth clustering of the observations. Useful for simulations.
outputDir Output directory.

Details

Not really used.

Author(s)

Panagiotis Papastamoulis

myDirichlet Simulate from Dirichlet distribution

Description

This function simulates random vectors from a Dirichlet distribution.

Usage

myDirichlet(alpha)

Arguments

alpha Vector of positive numbers denoting the parameters of the Dirichlet distribution.

Author(s)

Panagiotis Papastamoulis
Description
This function prints a summary of objects returned by the coupledMetropolis function.

Usage
S3 method for class 'bbm.object'
print(x, printSubset, ...)

Arguments
x An object of class bbm.object, which is returned by the coupledMetropolis function.
printSubset Logical indicating whether to print the header or the whole matrix of estimates. Default value: TRUE.
... ignored.

Details
The function prints the estimated distribution of the number of clusters, the estimated number of observations assigned to each cluster after post-processing the output with three label switching algorithms, as well as the header of the posterior mean estimates of b_{kj} (probability of success for cluster k and feature j) (conditionally on the most probable number of clusters).

Author(s)
Panagiotis Papastamoulis

toSolve An equation to solve

Description
Approximately solve the equation (25) of Nobile and Fearnside (2007).

Usage
toSolve(a, n, p0)
Arguments

a Positive number.
n Positive integer.
p_0 Probability.

Author(s)

Panagiotis Papastamoulis
Index

* package
 BayesBinMix-package, 2
allocationSamplerBinMix, 3
BayesBinMix (BayesBinMix-package), 2
BayesBinMix-package, 2
collapsedGibbsBinMix, 5
complete.loglikelihood, 6
coupledMetropolis, 2, 3, 5, 7
dealWithLabelSwitching, 10
dealWithLabelSwitchingMissing, 11
gibbsBinMix, 12
myDirichlet, 13
print.bbm.object, 14
toSolve, 14