Package ‘BayesGWQS’

June 23, 2020

Type Package
Title Bayesian Grouped Weighted Quantile Sum Regression
Version 0.0.2
Author David Wheeler, Matthew Carli
Maintainer Matthew Carli <carlimm@mymail.vcu.edu>
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.0.2
Depends R (>= 3.6.0)
SystemRequirements OpenBUGS, JAGS
Imports coda, stats, rjags
Suggests R2OpenBUGS, testthat
NeedsCompilation no
Repository CRAN
Date/Publication 2020-06-23 15:30:09 UTC

R topics documented:

- bgwqs.fit ... 2
- make.X ... 3
- make.x.s ... 4
- simdata ... 4

Index 6
This function fits a Bayesian grouped weighted quantile sum (BGWQS) regression model.

Usage

```r
bgwqs.fit(
  y,
  x,
  x.s,
  n.quantiles = 4,
  working.dir,
  mcmc = "jags",
  n.iter = 10000,
  n.burnin = 5000,
  n.thin = 1,
  n.adapt = 500,
  debug = FALSE
)
```

Arguments

- `y`: A vector containing outcomes.
- `x`: A matrix of component data.
- `x.s`: A vector of the number of components in each index.
- `n.quantiles`: The number of quantiles to apply to the component data.
- `working.dir`: A file path to the directory.
- `mcmc`: The MCMC program to be used for analysis. Currently "jags" and "openbugs" are supported arguments.
- `n.iter`: The number of total iterations per chain, including burn in.
- `n.burnin`: The number of iterations to discard at the beginning.
- `n.thin`: The thinning rate, which must be a positive integer.
- `n.adapt`: The number of adaption iterations, only required for JAGS analyses.
- `debug`: Only for OpenBUGS analyses. False by default, when true OpenBUGS remains open for further investigation.

Value

A list which includes BUGS output, sample chains post-burnin, and convergence test results.
make.X

Examples

```r
data("simdata")
group_list <- list(c("pcb_118", "pcb_138", "pcb_153", "pcb_180", "pcb_192"),
c("as", "cu", "pb", "sn"),
c("carbaryl", "propoxur", "methoxychlor", "diazinon", "chlorpyrifos"))
x.s <- make.x.s(simdata, 3, group_list)
X <- make.X(simdata, 3, group_list)
Y <- simdata$Y
work_dir <- tempdir()
results <- bgwqs.fit(y = Y, x = X, x.s = x.s, n.quantiles=4, working.dir = work_dir, mcmc = "jags",
n.iter = 10000, n.burnin = 5000, n.thin = 1, n.adapt = 500)
```

make.X

Forms matrix of components

Description

This function returns a matrix of component variables, X. The user can specify the desired chemicals and order by creating a list of string vectors, each vector containing the variable names of all desired elements of that group.

Usage

```r
make.X(df, num.groups, groups)
```

Arguments

- `df`: A dataframe containing named component variables
- `num.groups`: An integer representing the number of component groups desired
- `groups`: A list, each item in the list being a string vector of variable names for one component group

Value

A matrix of component variables

Examples

```r
data("simdata")
group_list <- list(c("pcb_118", "pcb_138", "pcb_153", "pcb_180", "pcb_192"),
c("as", "cu", "pb", "sn"),
c("carbaryl", "propoxur", "methoxychlor", "diazinon", "chlorpyrifos"))
X <- make.X(simdata, 3, group_list)
X
```
make.x.s Forms component group ID vector of X

Description
This function returns a vector which lets WQS.fit know the size and order of groups in X

Usage
make.x.s(df, num.groups, groups)

Arguments
- df: A dataframe containing named component variables
- num.groups: An integer representing the number of component groups desired
- groups: A list, each item in the list being a string vector of variable names for one component group

Value
A vector of integers, each integer relating how many columns are in each group

Examples
```r
data("simdata")
group_list <- list(c("pcb_118", "pcb_138", "pcb_153", "pcb_180", "pcb_192"),
                   c("as", "cu", "pb", "sn"),
                   c("carbaryl", "propoxur", "methoxychlor", "diazinon", "chlorpyrifos"))
x.s <- make.x.s(simdata, 3, group_list)
x.s
```

simdata Simulated data of chemical concentrations and one binary outcome variable

Description
Data were simulated to have 0.7 in-group correlation and 0.3 between-group correlation. There are three groups, with the third being significantly correlated to the outcome variable.

Usage
simdata
Format

A data frame with 1000 rows and 15 variables:

- **pcb_118** a numeric vector; part of group 1
- **pcb_138** a numeric vector; part of group 1
- **pcb_153** a numeric vector; part of group 1
- **pcb_180** a numeric vector; part of group 1
- **pcb_192** a numeric vector; part of group 1
- **as** a numeric vector; part of group 2
- **cu** a numeric vector; part of group 2
- **pb** a numeric vector; part of group 2
- **sn** a numeric vector; part of group 2
- **carbaryl** a numeric vector; part of group 3
- **propoxur** a numeric vector; part of group 3
- **methoxychlor** a numeric vector; part of group 3
- **diazinon** a numeric vector; part of group 3
- **chlorpyrifos** a numeric vector; part of group 3
- **Y** a numeric vector; the outcome variable
Index

*Topic datasets
 simdata, 4

bgwqs.fit, 2
make.X, 3
make.x.s, 4
simdata, 4