Package ‘BayesSPsurv’
September 13, 2021

Type Package
Title Bayesian Spatial Split Population Survival Model
Version 0.1.4
Description Parametric spatial split-population (SP) survival models for clustered event processes. The models account for structural and spatial heterogeneity among “at risk” and “immune” populations, and incorporate time-varying covariates. This package currently implements Weibull, Exponential and Log-logistic forms for the duration component. It also includes functions for a series of diagnostic tests and plots to easily visualize spatial autocorrelation, convergence, and spatial effects. Users can create their own spatial weights matrix based on their units and adjacencies of interest, making the use of these models flexible and broadly applicable to a variety of research areas. Joo et al. (2020) <https://github.com/Nicolas-Schmidt/BayesSPsurv/blob/master/man/figures/SPcure.pdf> describe the estimators included in this package.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Depends R (>= 3.6.0)
BugReports https://github.com/Nicolas-Schmidt/BayesSPsurv/issues
URL https://nicolas-schmidt.github.io/BayesSPsurv/
RoxygenNote 7.1.1
LinkingTo Rcpp, RcppArmadillo
Imports MCMCpack, FastGP, stats, Rcpp (>= 1.0.3), coda, dplyr, reshape2, ggplot2, ape, progress, rworldmap, countrycode
Suggests spduration
NeedsCompilation yes
Author Brandon L. Bolte [aut], Nicolas Schmidt [aut, cre], Sergio Bejar [aut], Minnie M. Joo [aut],
bsps_map

Description

Implement the mapCountryData function in a short and fast version.

Usage

bsps_map(data, mapTitle = "columnName")

Arguments

data data.

mapTitle title to add to the map, any string or 'columnName' to set it to the name of the
data column.

Examples

library(BayesSPsurv)

walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",
unitID = "id", tID = "year",
freq = "year", ongoing = FALSE)
capdist <- BayesSPsurv::spatial_SA(data = walter, var_ccode = "ccode", threshold = 800L)

set.seed(123456)

model <- spatialSPsurv(
 duration = duration ~ victory + comprehensive + lgpdl + unpk0,
 immune = atrisk ~ lgpdl,
 Y0 = 't.0',
 LY = 'lastyear',
 S = 'sp_id',
 data = walter[[1]],
 N = 1500,
 burn = 300,
 thin = 15,
 w = c(1,1,1),
 m = 10,
 form = "Weibull",
 prop.varV = 1e-05,
 prop.varW = 1e-03,
 A = walter[[2]]
)

bsp_map(data = model$W)

capdist

Gleditsch and Ward Distance data

Description
Dyadic dataset extracted from Gleditsch and Ward (2001). The dataset contains information on the distance between capital cities among independent nation-states.

Usage
data(capdist)

Format
A data frame with 41006 rows and 6 variables

Details
numa COW code – country A.
ida Three letter ISO code – country A.
umb COW code – country B.
idb Three letter ISO code – country B.
kmdist Distance between capital cities in the kilometers.
midist Minimal distance between capital cities in the kilometers.
Source

Description

Markov Chain Monte Carlo (MCMC) to run Bayesian split population survival model with exchangeable frailties.

Returns a summary of a exchangeSPsurv object via summary.mcmc.

Print method for a exchangeSPsurv x.

Returns a plot of a exchangeSPsurv object via plot.mcmc.

Usage

exchangeSPsurv(
 duration,
 immune,
 Y0,
 LY,
 S,
 data,
 N,
 burn,
 thin,
 w = c(1, 1, 1),
 m = 10,
 ini.beta = 0,
 ini.gamma = 0,
 ini.W = 0,
 ini.V = 0,
 form = c("Weibull", "exponential", "loglog"),
 prop.varV,
 prop.varW,
 id_WV = unique(data[, S])
)

S3 method for class 'frailtySPsurv'
summary(object, parameter = character(), ...)

S3 method for class 'frailtySPsurv'
print(x, ...)
S3 method for class 'frailtySPsurv'
plot(x, parameter = character(), ...)

Arguments

duration | survival stage equation written in a formula of the form \(Y \sim X_1 + X_2 + \ldots \) where \(Y \) is duration until failure or censoring.

immune | split stage equation written in a formula of the form \(C \sim Z_1 + Z_2 + \ldots \) where \(C \) is a binary indicator of immunity.

Y0 | the elapsed time since inception until the beginning of time period (t-1).

LY | last observation year (coded as 1; 0 otherwise) due to censoring or failure.

S | spatial information (e.g. district ID) for each observation that matches the spatial matrix row/column information.

data | data.frame.

N | number of MCMC iterations.

burn | burn-in to be discarded.

thin | thinning to prevent from autocorrelation.

w | size of the slice in the slice sampling for (betas, gammas, rho). Write it as a vector. E.g. \(c(1,1,1) \).

m | limit on steps in the slice sampling. A vector of values for beta, gamma, rho.

ini.beta | initial value for the parameter vector beta. By default is 0.

ini.gamma | initial value for the parameter vector gamma. By default is 0.

ini.W | initial value for the parameter vector W. By default is 0.

ini.V | initial value for the parameter vector V. By default is 0.

form | type of parametric model (Weibull, Exponential, or Log-Logistic).

prop.varV | proposed variance for V in Metropolis-Hastings.

prop.varW | proposed variance for W in Metropolis-Hastings.

id_WV | vector of type character that modifies the colnames of W and V in the model's result. By default is \(\text{unique(data[,S])} \).

object | an object of class frailtySPsurv, the output of exchangeSPsurv.

parameter | one of five parameters of the spatialSPsurv output. Indicate either "betas," "gammas," "rho", "lambda" or "delta".

... | additional parameter.

x | an object of class frailtySPsurv, the output of exchangeSPsurv.

Value

exchangeSPsurv returns an object of class "frailtySPsurv".

An "exchangeSPsurv" object has the following elements:

betas | matrix, numeric values of the posterior for each variable in the duration equation.
gammas matrix, numeric values of the posterior for each variable in the immune equation.
rho vector, numeric values of rho.
lambda vector, numeric values of lambda.
delta vector, numeric values of delta.
W matrix, numeric values of the posterior for Ws.
V matrix, numeric values of the posterior for Vs.
X matrix of X’s variables.
Z matrix of Z’s variables.
Y vector of ‘Y’.
Y0 vector of ‘Y0’.
C vector of ‘C’.
S vector of ‘S’.
ini.beta numeric initial values of beta.
ini.gamma numeric initial values of gamma.
ini.W numeric initial values of W.
ini.V numeric initial values of V.
form character, type of distribution.
call description for the model to be estimated.

list. Empirical mean, standard deviation and quantiles for each variable.
list. Empirical mean, standard deviation and quantiles for each variable.

Examples

```r
## 1
walter <- spduration::add_duration(Walter_2015_JCR, "renewed_war",
       unitID = "ccode", tID = "year",
       freq = "year", ongoing = FALSE)

# add S
walter <- spatial_SA(data = walter, var_ccode = "ccode", threshold = 800L)

set.seed(123456)

model <- exchangeSPsurv(
    duration = duration ~ fhcompor1 + lgdpl + comprehensive + victory +
               instabl + intensityln + ethfrac + unuko,
    immune = cured ~ fhcompor1 + lgdpl + victory,
    Y0 = 't.0',
    LY = 'lastyear',
)
```
```r
S = 'sp_id',
data = walter[[1]],
N = 100,
burn = 10,
thin = 10,
w = c(1,1,1),
m = 10,
form = "Weibull",
prop.varV = 1e-05,
prop.varW = 1e-05,
)

print(model)

summary(model, parameter = "betas")

# plot(model)

## 2
walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",
unitID = "ccode", tID = "year",
freq = "year", ongoing = FALSE)

walter$S <- rep(x = 1:length(unique(walter$ccode)), times = rle(walter$ccode)$lengths)
country <- countrycode::countrycode(unique(walter$ccode), 'gwn', 'iso3c')

set.seed(123456)

model <-
exchangeSPsurv(
  duration = duration ~ fhcompor1 + lgdpl + comprehensive + victory +
              instabl + intensityln + ethfrac + unpko,
  immune = cured ~ fhcompor1 + lgdpl + victory,
  Y0 = 't.0',
  LY = 'lastyear',
  S = 'S',
data = walter,
  N = 100,
burn = 10,
  thin = 10,
  w = c(1,1,1),
  m = 10,
  form = "loglog",
  prop.varV = 1e-05,
  prop.varW = 1e-05,
  id_WV = country
)

print(model)
```
Description

Uses Join Count tests to assess spatial clustering or dispersion of categorical variables in the data. Negative values indicate positive spatial clustering.

Usage

```r
plot_JoinCount(
  data,
  var_cured = character(),
  var_id = character(),
  var_time = character(),
  n = 1,
  t = 1.645,
  threshold = 800L
)
```

Arguments

data: data.
var_cured: binary indicator of immunity.
var_id: ID’s unique identifier.
var_time: variable that measures time.
n: number of observation per id.
t: value of the confidence interval.
threshold: distance in kilometers. By default is 800.

Value

A ggplot object

Examples

```r
library(BayesSPsurv)
dataw <- spduration::add_duration(data = BayesSPsurv::Walter_2015_JCR,
  y = "renewed_war",
  unitID = "ccode",
  tID = "year",
  freq = "year",
  ongoing = FALSE)
```
plot_Moran.I

plot_Moran.I(data = dataw,
 var_cured = "cured",
 var_id = "ccode",
 var_time = "year",
 n = 12)

plot_Moran.I

plot_Moran.I

Description

Implements Global Moran I test to evaluate spatial autocorrelation in a units' risk propensity in the data. Positive values indicate spatial clustering of similar values.

Usage

plot_Moran.I(
 data,
 var_duration = character(),
 var_id = character(),
 var_time = character(),
 n = 1,
 t = 1.645,
 threshold = 800L
)

Arguments

data data.
var_duration variable that measures duration until censoring or failure.
var_id ID's unique identifier.
var_time variable that measures time.
n number of observation per id.
t value of the confidence interval.
threshold distance in kilometers. By default is 800.

Value

A ggplot object
Examples

library(BayesSPsurv)
dataw <- spduration::add_duration(data = BayesSPsurv::Walter_2015_JCR,
y = "renewed_war",
unitID = "ccode",
tID = "year",
freq = "year",
ongoing = FALSE)

plot_Moran.I(data = dataw,
var_duration = "duration",
var_id = "ccode",
var_time = "year",
n = 12)

Description

Markov Chain Monte Carlo (MCMC) to run Bayesian split population survival model with no frailties.

Returns a summary of a SPsurv object via summary.mcmc.

Print method for a pooledSPsurv x.

Returns a plot of a pooledSPsurv object via plot.mcmc.

Usage

pooledSPsurv(
duration,
imune,
Y0,
LY,
data,
N,
burn,
thin,
w = c(1, 1, 1),
m = 10,
ini.beta = 0,
ini.gamma = 0,
form = c("Weibull", "exponential", "loglog")
)
Arguments

duration survival stage equation written in a formula of the form \(Y \sim X_1 + X_2 + \ldots \) where \(Y \) is duration until failure or censoring.

immune split stage equation written in a formula of the form \(C \sim Z_1 + Z_2 + \ldots \) where \(C \) is a binary indicator of immunity.

\(Y_0 \) the elapsed time since inception until the beginning of time period \((t-1)\).

\(L_Y \) last observation year (coded as 1; 0 otherwise) due to censoring or failure.

data data.frame.

\(N \) number of MCMC iterations.

\(\text{burn} \) burn-in to be discarded.

\(\text{thin} \) thinning to prevent from autocorrelation.

\(w \) size of the slice in the slice sampling for (betas, gammas, rho). Write it as a vector. E.g. \(c(1,1,1) \).

\(m \) limit on steps in the slice sampling. A vector of values for beta, gamma, rho.

\(\text{ini.beta} \) initial value for the parameter vector beta. By default is 0.

\(\text{ini.gamma} \) initial value for the parameter vector gamma. By default is 0.

form type of parametric model (Weibull, Exponential, or Log-Logistic).

object an object of class \(\text{SPsurv} \), the output of \(\text{pooledSPsurv} \).

parameter one of Four parameters of the \(\text{pooledSPsurv} \) output. Indicate either "betas," "gammas", "rho" or "delta".

\(\ldots \) additional parameter.

\(x \) an object of class \(\text{SPsurv} \), the output of \(\text{pooledSPsurv} \).

Value

\(\text{pooledSPsurv} \) returns an object of class "SPsurv".

A "\(\text{pooledSPsurv} \)" object has the following elements:

betas matrix, numeric values of the posterior for each variable in the duration equation.

gammas matrix, numeric values of the posterior for each variable in the immune equation.

rho vector, numeric values of rho.
delta vector, numeric values of delta.
X matrix of X’s variables.
Z matrix of Z’s variables.
Y vector of ‘Y’.
Y0 vector of ‘Y0’.
C vector of ‘C’.
ini.beta numeric initial value of beta.
ini.gamma numeric initial value of gamma.
form character, type of distribution.
call description for the model to be estimated.

Examples

walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",
 unitID = "ccode", tID = "year",
 freq = "year", ongoing = FALSE)

set.seed(123456)

model <-
pooledSPsurv(
 duration = duration ~ fhcompor1 + lgdpl + comprehensive + victory +
 instabl + intensityln + ethfrac + unpko,
 immune = cured ~ fhcompor1 + lgdpl + victory,
 Y0 = 't.0',
 LY = 'lastyear',
 data = walter,
 N = 100,
 burn = 10,
 thin = 10,
 w = c(1,1,1),
 m = 10,
 form = "Weibull"
)

print(model)

summary(model, parameter = "betas")

plot(model)
Description

Markov Chain Monte Carlo (MCMC) to run time-varying Bayesian split population survival model with spatial frailties.

Returns a summary of a exchangeSPsurv object via summary.mcmc.

Print method for a spatialSPsurv x.

Returns a plot of a spatialSPsurv object via plot.mcmc.

Usage

spatialSPsurv(
 duration,
 immune,
 Y0,
 LY,
 S,
 A,
 data,
 N,
 burn,
 thin,
 w = c(1, 1, 1),
 m = 10,
 ini.beta = 0,
 ini.gamma = 0,
 ini.W = 0,
 ini.V = 0,
 form = c("Weibull", "exponential", "loglog"),
 prop.varV,
 prop.varW,
 id_WV = colnames(A)
)

S3 method for class 'spatialSPsurv'
summary(object, parameter = character(), ...)

S3 method for class 'spatialSPsurv'
print(x, ...)

S3 method for class 'spatialSPsurv'
plot(x, parameter = character(), ...)
Arguments

duration survival stage equation written in a formula of the form \(Y \sim X_1 + X_2 + \ldots \) where \(Y \) is duration until failure or censoring.

immune split stage equation written in a formula of the form \(C \sim Z_1 + Z_2 + \ldots \) where \(C \) is a binary indicator of immunity.

\(Y_0 \) the elapsed time since inception until the beginning of time period (t-1).

\(LY \) last observation year (coded as 1; 0 otherwise) due to censoring or failure.

\(S \) spatial information (e.g. district ID) for each observation that matches the spatial matrix row/column information.

\(A \) an a times a spatial weights matrix where a is the number of unique spatial units (S) load as a separate file.

data data.frame.

\(N \) number of MCMC iterations.

burn burn-in to be discarded.

thin thinning to prevent from autocorrelation.

\(w \) size of the slice in the slice sampling for \((\text{betas, gammas, rho})\) Write it as a vector. E.g. \(c(1,1,1)\).

\(m \) limit on steps in the slice sampling. A vector of values for beta, gamma, rho.

\(\text{ini.beta} \) initial value for the parameter vector beta. By default is 0.

\(\text{ini.gamma} \) initial value for the parameter vector gamma. By default is 0.

\(\text{ini.W} \) initial value for the parameter vector W. By default is 0.

\(\text{ini.V} \) initial value for the parameter vector V. By default is 0.

form type of parametric model (Weibull, Exponential, or Log-Logistic).

\(\text{prop.varV} \) proposal for variance of V in Metropolis-Hastings.

\(\text{prop.varW} \) proposal for variance of W in Metropolis-Hastings.

\(\text{id.WV} \) vector of type character that modifies the colnames of W and V in the model’s result. By default is colnames(A).

object an object of class \texttt{spatialSPsurv}, the output of \texttt{spatialSPsurv}.

parameter one of five parameters of the \texttt{spatialSPsurv} output. Indicate either "betas," "gammas," "rho", "lambda" or "delta".

\(x \) additional parameter.

Value

\texttt{spatialSPsurv} returns an object of class "\texttt{spatialSPsurv}". A "\texttt{spatialSPsurv}" object has the following elements:

\(\text{betas} \) matrix, numeric values of the posterior for each variable in the duration equation.

\(\text{gammas} \) matrix, numeric values of the posterior for each variable in the immune equation.
rho vector, numeric values of rho.
lambda vector, numeric values of lambda.
delta vector, numeric values of delta.
W matrix, numeric values of the posterior for Ws.
V matrix, numeric values of the posterior for Vs.
X matrix of X’s variables.
Z matrix of Z’s variables.
Y vector of ‘Y’.
Y0 vector of ‘Y0’.
C vector of ‘C’.
S vector of ‘S’.
ini.beta numeric initial values of beta.
ini.gamma numeric initial values of gamma.
ini.W numeric initial values of W.
ini.V numeric initial values of V.
form character, type of distribution.
call description for the model to be estimated.

Examples

walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",
 unitID = "ccode", tID = "year",
 freq = "year", ongoing = FALSE)

walter <- spatial_SA(data = walter, var_ccode = "ccode", threshold = 800L)

set.seed(123456)

model <-
 spatialSPsurv(
 duration = duration ~ fhcompor1 + lgdpl + comprehensive + victory +
 instabl + intensityln + ethfrac + unpko,
 immune = cured ~ fhcompor1 + lgdpl + victory,
 Y0 = 't.0',
 LY = 'lastyear',
 S = 'sp_id',
 data = walter[[1]],
 N = 100,
 burn = 10,
 thin = 10,
 w = c(1,1,1),
 m = 10,
spatial_SA

form = "Weibull",
prop.varV = 1e-05,
prop.varW = 1e-05,
A = walter[[2]]
)

print(model)

summary(model, parameter = "betas")

plot(model)

spatial_SA spatial_SA

Description
Generates a spatial weights matrix (A) and sp_id (S). User defines units and adjacencies.

Usage
spatial_SA(data, var_ccode, threshold = 800L)

Arguments
data data.frame.
var_ccode name of the variable that contains the country codes.
threshold distance in kilometers. By default is 800.

Value
list. Contains database with variable sp_id (S) and matrix A.

Examples
walter <- spduration::add_duration(Walter_2015_JCR,"renewed_war",
 unitID = "ccode",
 tID = "year",
 freq = "year",
 ongoing = FALSE)

walter <- spatial_SA(data = walter,
 var_ccode = "ccode",
 threshold = 800L)
Description
Calculates the deviance information criterion (DIC) and Log-likelihood for fitted model outputs of pooled, exchangeable, and spatial Split Population survival models for which a log-likelihood can be obtained using the formula $DIC = -2 \times (L - P)$, where L is the log likelihood of the data given the posterior means of the parameter and P is the estimate of the effective number of parameters in the model.

Usage
SPstats(object)

Arguments

object An object of the output of pooled, exchangeable, or spatial Split Population survival model.

Value
List.

Description
Subsetted version of a time-series-cross-sectional (TSCS) dataset used in Walter (2015). It has data on duration of post-war peace as well as information on other relevant economic and political data.

Usage
data(Walter_2015_JCR)

Format
A data frame with 1237 rows and 13 variables
Details

- **year** year.
- **lastyear** last observation year.
- **renewed_war** binary variable coded as 1 if the war was fought.
- **fhcompor1** Freedom House civil liberties index.
- **lgdpl** log of per capita GDP in 2005 dollars.
- **comprehensive** combatants signed comprehensive peace agreement.
- **victory** end of previous war with outright victory.
- **instabl** dummy that indicates whether there was a positive or negative change in the Polity 2 score in the previous country-year.
- **intensityln** deaths per year – logged.
- **ethfrac** index of ethnic fractionalization.
- **unpko** number of UN peacekeepers on the ground.
- **ccode** country code.
- **id** unique conflict identifier.

Source

Index

* datasets
 capdist, 3
 Walter_2015_JCR, 17

bsps_map, 2

capdist, 3

echangeSPsurv, 4, 4, 5

mapCountryData, 2

plot.frailtySPsurv (exchangeSPsurv), 4
plot.mcmc, 4, 10, 13
plot.spatialSPsurv (spatialSPsurv), 13
plot.SPsurv (pooledSPsurv), 10
plot_JoinCount, 8
plot_Moran.I, 9
pooledSPsurv, 10, 10, 11
print.frailtySPsurv (exchangeSPsurv), 4
print.spatialSPsurv (spatialSPsurv), 13
print.SPsurv (pooledSPsurv), 10

spatial_SA, 16
spatialSPsurv, 5, 13, 13, 14
SPstats, 17
summary.frailtySPsurv (exchangeSPsurv), 4
summary.mcmc, 4, 10, 13
summary.spatialSPsurv (spatialSPsurv), 13
summary.SPsurv (pooledSPsurv), 10

Walter_2015_JCR, 17