Package ‘BinaryEPPM’

July 31, 2019

Type Package
Title Mean and Variance Modeling of Binary Data
Version 2.3
Imports Formula, expm, numDeriv, stats, lmtest, grDevices, graphics
Date 2019-07-30
Author David M Smith, Malcolm J Faddy
Maintainer David M. Smith <smithdm1@us.ibm.com>
Depends R (>= 3.5.0)
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2019-07-31 11:20:06 UTC

R topics documented:

BinaryEPPM-package .. 1
BBprob .. 5
Berkshires.litters ... 6
BinaryEPPM ... 6
CBprob ... 10
coef.BinaryEPPM ... 11
cooks.distance.BinaryEPPM 12
doubexp ... 13
doubrecip ... 13
EPPMprob ... 14
fitted.BinaryEPPM ... 15
foodstamp.case ... 15
foodstamp.grouped .. 16
GasolineYield ... 18
GBprob .. 19
Mean and Variance Modeling of Binary Data

The DESCRIPTION file:

Package: BinaryEPPM
Type: Package
Title: Mean and Variance Modeling of Binary Data
Version: 2.3
Imports: Formula, expm, numDeriv, stats, lmtest, grDevices, graphics
Date: 2019-07-30
Author: David M Smith, Malcolm J Faddy
Maintainer: David M. Smith <smithdm1@us.ibm.com>
Depends: R (>= 3.5.0)
Description: Modeling under- and over-dispersed binary data using extended Poisson process models (EPPM) as in the article Faddy and Smith (2012) <doi:10.1002/bimj.201100214>.
License: GPL-2

Index of help topics:

BBprob
Calculation of vector of probabilities for the beta binomial distribution.

Berkshires.litters
The data are of the number of male piglets born in litters of varying sizes for the Berkshire breed of pigs.

BinaryEPPM
Fitting of EPPM models to binary data.

BinaryEPPM-package
Mean and Variance Modeling of Binary Data

CBprob
Calculation of vector of probabilities for the correlated binomial distribution.

EPPMprob
Calculation of vector of probabilities for a extended Poisson process model (EPPM).

GBprob
Calculation of vector of probabilities for the generalized binomial distribution.

GasolineYield
Data on gasoline yields.

Hiroshima.case
Individual case data of chromosome aberrations in survivors of Hiroshima.

Hiroshima.grouped
Data of chromosome aberrations in survivors of Hiroshima grouped into dose ranges and represented as frequency distributions.

KupperHaseman.case
Kupper and Haseman example data

LL.Regression.Binary
Function called by optim to calculate the log likelihood from the probabilities and hence perform the fitting of regression models to the binary data.

LL.gradient
Function used to calculate the first derivatives of the log likelihood with respect to the model parameters.

Luningetal.litters
Number of trials (implantations) in data of Luning, et al., (1966)

Model.BCBinProb
Probabilities for beta and correlated binomial distributions given p's and scale-factors.

Model.Binary
Function for obtaining output from distributional models.

Model.GB
Probabilities for binomial and generalized binomial distributions given p's and b.

Model.JMVGB
Probabilities for generalized binomial distributions given p's and scale-factors.

Parkes.litters
The data are of the number of male piglets born
Using Generalized Linear Model (GLM) terminology, the functions utilize linear predictors for the probability of success and scale-factor with various link functions for p, and log link for scale-factor, to fit regression models. Smith and Faddy (2019) gives further details about the package as well as examples of its use.
BBprob

Author(s)
David M Smith, Malcolm J Faddy

Maintainer: David M. Smith <smithdm1@us.ibm.com>

References

See Also

CountsEPPM, betareg

Examples

```r
data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
                        number.spores / number.tested ~ 1 + offset(logdilution),
                        model.type = 'p only', model.name = 'binomial')
summary(output.fn)
```

BBprob

Calculation of vector of probabilities for the beta binomial distribution.

Description

Given a vector of parameters and a scalar of the number of trials the function returns a vector of probabilities.

Usage

```r
BBprob(twoparameter, nt)
```

1. https://doi.org/10.18637/jss.v034.i02
2. https://doi.org/10.1002/bimj.201100214
3. https://doi.org/10.18637/jss.v048.i11
4. https://doi.org/10.18637/jss.v090.i08
5. https://doi.org/10.18637/jss.v034.i01
Arguments
twoparameter A vector of the parameters of the beta binomial distribution.
nt The number of trials.

Value
Vector of probabilities

Author(s)
David M. Smith <smithdm1@us.ibm.com>

References

Examples
twoparameter <- c(0.96477815,0.7561417)
names(twoparameter) <- c('p','theta')
nt <- 37
BBprob(twoparameter,nt)

Berkshires.litters The data are of the number of male piglets born in litters of varying sizes for the Berkshire breed of pigs.

Description
The data are arranged as a list of binomial frequency distributions where the listing is by litter size which is included both as a variate (vsize) and as a factor (fsize)

Usage
data("Berkshires.litters")

Format
Source

Examples

data("Berkshires.litters")

Description
Fits regression models to under- and over-dispersed binary data using extended Poisson process models.

Usage
BinaryEPPM(formula, data, subset = NULL, na.action = NULL, weights = NULL, model.type = "p and scale-factor", model.name = "generalized binomial", link = "cloglog", initial = NULL, method = "Nelder-Mead", pseudo.r.squared.type = "square of correlation", control = NULL)

Arguments

formula
Formulae for the probability of a success p and scale-factor. The object used is from the package Formula of Zeileis and Croissant (2010) which allows multiple parts and multiple responses. "formula" should consist of a left hand side (lhs) of single response variable and a right hand side (rhs) of one or two sets of variables for the linear predictors for the mean and (if two sets) the variance. This is as used for the R function "glm" and also, for example, as for the package "betareg" (Cribari-Neto and Zeileis, 2010). The function identifies from the argument data whether a data frame (as for use of "glm") or a list has been input. The list should be exactly the same as for a data frame except that the response variable is a list of vectors of frequency distributions rather than two vectors of paired counts of number responding (r) out of number tested as for the data frame. The subordinate functions fit models where the response variables are "p.obs", or "scalef.obs" according to the model type being fitted. The values for these response variables are not input as part of "data", they are calculated within the function from a list of grouped binary data input. If the "model.type" is "p only", "formula" consists of a lhs of the response variable and a rhs of the terms of the linear predictor for the mean model. If the "model.type" is "p and scale-factor" there are two sets of terms in the rhs of "formula" i.e., "p.obs" and "scalef.obs" together with the two sets of terms for the linear predictors of p and scale-factor.
"data" should be either a data frame (as for use of "glm") or a list. The list should be exactly the same as for a data frame except that the response variable is a list of vectors of frequency distributions rather than a vector of single counts as for the data frame. Only one list is allowed within "data" as it is identified as the dependent variable. If other lists are in "data", for example for use as weights, they should be removed from "data" prior to calling this function. The extracted list can be called using the "weights" argument to this function. Within the function a working list "listcounts" and data frames with components such as "p.obs", "scalef.obs", "covariates", "offset.mean", "offset.variance" are set up. The component "covariates" is a data frame of vectors of covariates in the model. The component "listcounts" is a list of vectors of frequency distributions, or the single pairs of r/n in grouped form if "data" is a data frame.

subset
Subsetting commands.

na.action
Action taken for NAs in data.

weights
Vector of list of lists of weights.

model.type
Takes one of two values i.e. "p only" or "p and scale-factor". The "p only" value fits a linear predictor function to the parameter \(a \) in equation (3) of Faddy and Smith (2012). If the model type being fitted is binomial, modeling \(a \) is the same as modeling the mean. For the negative binomial the mean is \(b \exp(a) -1 \), \(b \) also being as in equation (3) of Faddy and Smith (2012). The "p and scale-factor" value fits linear predictor functions to both the probability of a success \(p \) and the scale-factor.

model.name
If model.type is "p only" the model being fitted is one of the four "binomial", "Faddy distribution", "beta binomial", "correlated binomial". If model.type is "p and scale-factor" the model being fitted is either "general" i.e. as equations (4) and (6) of Faddy and Smith (2012) or one of the two "beta binomial", "correlated binomial".

link
Takes one of nine values i.e., 'logit', 'probit', 'cloglog', 'cauchit', 'log', 'loglog', 'double exponential', 'double reciprocal', 'power logit'. The default is 'cloglog'. The 'power logit' has an attribute of 'power' for which the default is 1 i.e., a logit link.

initial
This is a vector of initial values for the parameters. If this vector is NULL then initial values based on a fitting binomial models using "glm" are calculated within the function.

method
Takes one of the two values "Nelder-Mead" or "BFGS" these being arguments of optim.

pseudo.r.squared.type
Takes one of the three values "square of correlation", "R square" or "max-rescaled R square". The "default" is as used in Cribari-Neto and Zeileis (2010) and is the square of the correlation between the observed and predicted values on the GLM linear predictor scale. The other two are as described in Cox and Snell (1989), and Nagelkerke (1991) and apply to logistic regression.

control
"control" is a list of control parameters as used in "optim". If this list is NULL the defaults for "optim" are set as "control <- list(fnscale=-1, trace=0, maxit=1000)". The control parameters that can be changed by inputting a variable length list are "fnscale, trace, maxit, abstol, reltol, alpha, beta, gamma". Details of "optim" and its control parameters are available in the online R help manuals.
BinaryEPPM

Value

data.type The type of the data i.e., data frame or list
list.data Data as a list of lists of frequency distributions
call The call of the function
formula The formula argument
model.type The type of model being fitted
model.name The model being fitted
link The link function
covariates.matrix.p The design matrix for the probability of a success
covariates.matrix.scalef The design matrix for the scalefactor
offset.p The offset vector for the probability of a success
offset.scalef The offset vector for the scalefactor
coefficients Estimates of model parameters
loglikelihood Loglikelihood
vcov The variance/covariance matrix
n The number of observations
nobs The number of observations
df.null The degrees of freedom of the null model
df.residual The degrees of freedom of the residual
vnmax Vector of maximums of grouped count data vectors in list.counts
weights Vector or list of weights
converged Whether the iterative process converged, TRUE or FALSE
iterations Number of iterations taken
method Method for optim either Nelder-Mead or BFGS
pseudo.r.squared Pseudo R**2 value
start Starting values for iterative process
optim Estimates of model parameters
control Control parameters for optim
fitted.values Fitted values for probability of success
y Dependent variable
terms Terms in model fitted

Author(s)

David M. Smith <smithdm1@us.ibm.com>
References

See Also

CountsEPPM, betareg

Examples

```r
data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
                  number.spores / number.tested ~ 1 + offset(logdilution),
                  model.type = "p only", model.name = "binomial")
summary(output.fn)
```

CBprob

Calculation of vector of probabilities for the correlated binomial distribution.

Description

Given a vector of parameters and a scalar of the number of trials the function returns a vector of probabilities.

Usage

```r
CBprob(twoparameter, nt)
```
Arguments

twoparameter A vector of the parameters of the correlated binomial distribution.
nt The number of trials.

Value

Vector of probabilities

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

Kupper L, Haseman J (1978). The Use of a Correlated Binomial Model for the Analysis of Toxico-

Examples

twoparameter <- c(0.971242852,0.001465007)
names(twoparameter) <- c('p','rho')
nt <- 37
CBprob(twoparameter,nt)

Description

Extract the regression model coefficients from models of class "BinaryEPMM".

Usage

S3 method for class 'BinaryEPMM'
coef(object, prtpar = c("full", "p", "scale.factor"), ...)

Arguments

object fitted model object of class "BinaryEPMM".
prtpar character indicating coefficients of the fitted model to be output: all coefficients
("full"), coefficients of the model for probability of success ("p"), coefficients of
the model for scale-factor ("scale.factor")

Details

One of a set of standard extractor functions for fitted model objects of class "BinaryEPMM."
Value

Vector of coefficients of fitted regression model.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

See Also

betareg

data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
 number.spores / number.tested ~ 1 + offset(logdilution))
coef(output.fn, prtpar = "full")
coef(output.fn, prtpar = "p")
coef(output.fn, prtpar = "scale.factor")

cooks.distance.BinaryEPPM

Cook's distance for BinaryEPPM Objects

Description

Calculates Cook's distances for BinaryEPPM objects.

Usage

S3 method for class 'BinaryEPPM'
cooks.distance(model, ...)

Arguments

model fitted model object of class "BinaryEPPM".
...

Details

Cook's distances as in GLMs.

Value

A vector of Cook's distances.

Author(s)

David M. Smith <smithdm1@us.ibm.com>
References

See Also

betareg

Examples

data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
 number.spores / number.tested ~ 1 + offset(logdilution),
 model.type = 'p only', model.name = 'binomial')
cooks.distance(output.fn)

doubexp

Double exponential Link Function

Description

Computes the double exponential link function, including its inverse.

Usage

doubexp()

Value

The double exponential transformation of theta.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

\(^{11}\)https://doi.org/10.18637/jss.v034.i02

doubrecip
Double reciprocal Link Function

Description

Computes the double reciprocal link function, including its inverse.

Usage

`doubrecip()`

Value

The double reciprocal transformation of theta.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

EPPMprob
Calculation of vector of probabilities for a extended Poisson process model (EPPM).

Description

Calculates a vector of probabilities given a vector of rates using the matrix exponential function from Goulet, Dutang, Maechler, Firth, Shapira, Stadelmann (2014) which depends on the package Matrix of Bates and Maechler (2012).

Usage

`EPPMprob(vlambda)`

Arguments

- `vlambda`
 a vector of rates of an extended Poisson process.

Details

This is a similar function to that in Smith and Faddy (2014).

Value

The value returned is a vector of probabilities.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

fitted.BinaryEPPM Extraction of fitted values from BinaryEPPM Objects

Description

This function is generic. Extract the fitted values from models of class "BinaryEPPM".

Usage

```r
## S3 method for class 'BinaryEPPM'
fitted(object, ...)
```

Arguments

- `object` fitted model object of class "BinaryEPPM".
- `...` currently not used.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

See Also

fitted
foodstamp.case Participation in the federal food stamp program.

Description

The dependent variable is a binary variable indicating participation in the federal food stamp program. The independent variables are two binary ones i.e., tenancy and supplemental income, and a continuous one of the log(monthly income+1).

Usage

data("foodstamp.case")

Format

A data frame with 150 observations on the following 6 variables.

- participation a numeric vector
- tenancy a numeric vector
- suppl.income a numeric vector
- income a numeric vector
- n a numeric vector
- weights1 a numeric vector

Source

References

Examples

data(foodstamp.case)

14https://doi.org/10.1080/01621459.1989.10478791
Participation in the federal food stamp program as a list not a data frame.

Description

The dependent variable is a list of frequency distributions of binary variables indicating participation in the federal food stamp program. The independent variables are two binary ones i.e., tenancy and supplemental income, and a continuous one of the log(monthly income+1).

Usage

data("foodstamp.grouped")

Format

The format is: List of 5

$l.participation$: List of 150...

$tenancy$: Factor w/ 2 levels "0","1"

$suppl.income$: Factor w/ 2 levels "0","1"

$income$: int [1:150]

$l.weights1$: List of 150...
Source

References

Examples

data(foodstamp.grouped)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data on gasoline yields originally from Prater (1956). Used as an example in Cribari-Neto and Zeileis (2010).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data("GasolineYield")</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>A data frame with 32 observations on the following 8 variables.</td>
</tr>
<tr>
<td>percent</td>
</tr>
<tr>
<td>vthousand</td>
</tr>
</tbody>
</table>

Source

References

Examples

data(foodstamp.grouped)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data on gasoline yields originally from Prater (1956). Used as an example in Cribari-Neto and Zeileis (2010).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data("GasolineYield")</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>A data frame with 32 observations on the following 8 variables.</td>
</tr>
<tr>
<td>percent</td>
</tr>
<tr>
<td>vthousand</td>
</tr>
</tbody>
</table>

Source

References

Examples

data(foodstamp.grouped)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data on gasoline yields originally from Prater (1956). Used as an example in Cribari-Neto and Zeileis (2010).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data("GasolineYield")</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>A data frame with 32 observations on the following 8 variables.</td>
</tr>
<tr>
<td>percent</td>
</tr>
<tr>
<td>vthousand</td>
</tr>
</tbody>
</table>

Source

References

Examples

data(foodstamp.grouped)

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data on gasoline yields originally from Prater (1956). Used as an example in Cribari-Neto and Zeileis (2010).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>data("GasolineYield")</code></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>A data frame with 32 observations on the following 8 variables.</td>
</tr>
<tr>
<td>percent</td>
</tr>
<tr>
<td>vthousand</td>
</tr>
</tbody>
</table>

Source

References

Examples

data(foodstamp.grouped)
gravity a numeric vector
pressure a numeric vector
temp10 a numeric vector
temp a numeric vector
batch a factor with levels 1 2 3 4 5 6 7 8 9 10

Source

References

Examples
data(GasolineYield)

GBprob

Calculation of vector of probabilities for the generalized binomial distribution.

Description
Given a vector of parameters and a scalar of the number of trials the function returns a vector of probabilities.

Usage
GBprob(twoparameter, nt)

Arguments
 twoparameter A vector of the parameters of the generalized binomial distribution.
 nt The number of trials.

Value
Vector of probabilities

Author(s)
David M. Smith <smithdm1@us.ibm.com>
References

Examples

twoparameter <- c(0.971242852, 0.001465007)
names(twoparameter) <- c('p', 'b')
nt <- 37
GBprob(twoparameter, nt)

hatvalues.BinaryEPPM

* Extraction of hat matrix values from BinaryEPPM Objects *

Description

Extract the values of the hat matrix from models of class "BinaryEPPM".

Usage

S3 method for class 'BinaryEPPM'
hatvalues(model, ...)

Arguments

 model fitted model object of class "BinaryEPPM".
 ... some methods for this generic function require additional arguments.

Value

The calculated hat values for the fitted model. These are used to calculate Cook's distances.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

See Also

betareg

\(^1\)https://doi.org/10.1002/bimj.201100214

\(^2\)https://doi.org/10.18637/jss.v034.i02
Examples

```r
data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
    number.spores / number.tested ~ 1 + offset(logdilution),
    model.type = 'p only', model.name = 'binomial')
hatvalues(output.fn)
```

Hiroshima.case

Individual case data of chromosome aberrations in survivors of Hiroshima.

Description

The data is of chromosome aberrations amongst survivors of the atomic bombs exploded over Japan. This data set is of individual survivors. The data is from Morel and Neechal (2012).

Usage

```r
data("Hiroshima.case")
```

Format

A data frame with 648 observations on the following 6 variables.

- `m` a numeric vector
- `t` a numeric vector
- `t65d_gamma` a numeric vector
- `t65d_neutron` a numeric vector
- `z` a numeric vector
- `zz` a numeric vector

Details

The doses vectors `z` and `zz` have been standardized to mean of 0, standard deviation of 1 form.

Source

Examples

```r
data("Hiroshima.case")
```
Hiroshima.grouped

Data of chromosome aberrations in survivors of Hiroshima grouped into dose ranges and represented as frequency distributions.

Description

The data is of chromosome aberrations amongst survivors of the atomic bombs exploded over Japan. This data set is grouped into four frequency distributions. The data is from Prentice (1986).

Usage

```r
data("Hiroshima.grouped")
```

Format

The format is: List of 5
```
$ fdose: Factor w/ 7 levels "0","1-99","100-199",...: 1 2 3 4 5 6 7
$ vdose: num [1:7] 0.38 4 4.4 3.7 2.4 1.8 0.8
$ gz : num [1:7] 0.6129 0.3253 0.0048 0.3391 1.3392 ...
$ gzz : num [1:7] 0.6129 0.3253 0.00048 0.3391 1.33927 ...
$ number.aberrations: List of 7
```

Details

The grouped doses of Prentice (1986) have been standardized to gz and gzz with mean of 0, standard deviation of 1 form. This was done to match the doses used in the related individual survivor data form of the data set Hiroshima.case.Rd.

Source

Examples

```r
data("Hiroshima.grouped")
```

19https://doi.org/10.1080/01621459.1986.10478275
KupperHaseman.case
Kupper and Haseman example data

Description

Data of the number of deaths out of number of implants for pregnant female mice for two groups each of size 10.

Usage

```r
data("KupperHaseman.case")
```

Format

A data frame with 20 observations on the following 3 variables.

- **Group**: a factor with levels Control Treated
- **Number.Deaths**: a numeric vector
- **Number.Implants**: a numeric vector

Source

Examples

```r
data("KupperHaseman.case")
```

LL.gradient
Function used to calculate the first derivatives of the log likelihood with respect to the model parameters.

Description

Function used to calculate the first derivatives of the log likelihood with respect to the model parameters. These are numerical derivatives calculated using the numerical derivative functions of Gilbert and Varadhan (2015).

Usage

```r
LL.gradient(parameter, model.type, model.name, link, ntrials, nsuccess, covariates.matrix.p, covariates.matrix.scalef, offset.p, offset.scalef, weights, grad.method)
```
Arguments

parameter A vector of the parameters of the model which is set to initial estimates on function call.

model.type Takes one of two values i.e. 'p only' or 'p and scale-factor'. The 'p only' value fits linear predictor functions to the probability of a success 'p' as in Faddy and Smith (2012). The 'p and scale-factor' value fits linear predictor functions to both the 'p' and the scale-factor. The default is 'p and scale-factor'.

model.name If model.type is 'p only' the model being fitted is one of the four 'binomial', 'generalized binomial', 'beta binomial' or 'correlated binomial'. If model.type is 'p and scale-factor' the model being fitted is one of the three 'generalized binomial', 'beta binomial' or 'correlated binomial'. Information about these models is given in Faddy and Smith (2012). The default is 'generalized binomial'.

link Takes one of nine values i.e., 'logit', 'probit', 'cloglog', 'cauchit', 'log', 'loglog', 'double exponential', 'double reciprocal', 'power logit'. The default is 'cloglog'. The 'power logit' has an attribute of 'power' for which the default is 1 i.e., a logit link.

ntrials A vector length 'n+1' representing the number of trials 'n' i.e., a vector with all elements equal to 'n'.

nsuccess A vector representing the frequency distribution of the binomial distribution for fixed number of trials 'n'.

covariates.matrix.p A matrix of covariates for the mean where rows are the number of values in list.binary and columns the covariates. This matrix is extracted from the formulae in function BinaryEPPM. However, in the accompanying example it is shown how it can be constructed independently of function BinaryEPPM.

covariates.matrix.scalef A matrix of covariates for the variance where rows are the number of values in list.binary and columns the covariates. The default is a vector of ones. This matrix is extracted from the formulae in function BinaryEPPM. However, in the accompanying example it is shown how it can be constructed independently of function BinaryEPPM.

offset.p An offset vector for the probability of success p. The default is a vector of ones.

offset.scalef An offset vector for the scale-factor. The default is a vector of ones.

weights A vector or list of weights for the modeling of probability of success. The default is a vector of ones.

grad.method Numerical method used to calculate gradients when the optimization method for optim is BFGS either simple or Richardson. This is the grad.method attribute of argument method of BinaryEPPM. The default is simple.

Value

A vector of numerical first derivatives.
Author(s)
David M. Smith <smithdm1@us.ibm.com>

References

Examples

```r
link <- 'cloglog'
attr(link, which="p") <- make.link(link)
nsuccess <- list(c(rep(0,5),352,479,530,291,101,17))
ntrials <- list(c(rep(10,11)))
parameter <- c(0.06363398,-0.47085362)
LL.gradient(parameter, model.type = "p and scale-factor", model.name = "generalized binomial", link = link, ntrials = ntrials, nsuccess = nsuccess, covariates.matrix.p = matrix(c(1), nrow=1), covariates.matrix.scalef = matrix(c(1), nrow=1), offset.p = c(0), offset.scalef = c(0), weights = list(c(rep(1,11))), grad.method = "Richardson")
```

LL.Regression.Binary

Function called by optim to calculate the log likelihood from the probabilities and hence perform the fitting of regression models to the binary data.

Description
Fits specified regression models to the data.

Usage

```r
LL.Regression.Binary(parameter, model.type, model.name, link, ntrials, nsuccess, covariates.matrix.p, covariates.matrix.scalef, offset.p, offset.scalef, weights, grad.method)
```

Arguments

- **parameter**: A vector of the parameters of the model which is set to initial estimates on function call.
- **model.type**: Takes one of two values i.e. 'p only' or 'p and scale-factor'. The 'p only' value fits linear predictor functions to the probability of a success 'p' as in Faddy and Smith (2012). The 'p and scale-factor' value fits linear predictor functions to both the 'p' and the scale-factor. The default is 'p and scale-factor'.
model.name If model.type is 'p only' the model being fitted is one of the four 'binomial', 'generalized binomial', 'beta binomial' or 'correlated binomial'. If model.type is 'p and scale-factor' the model being fitted is one of the three 'generalized binomial', 'beta binomial' or 'correlated binomial'. Information about these models is given in Faddy and Smith (2012). The default is 'generalized binomial'.

link Takes one of nine values i.e., 'logit', 'probit', 'cloglog', 'cauchit', 'log', 'loglog', 'double exponential', 'double reciprocal', 'power logit'. The default is 'cloglog'. The 'power logit' has an attribute of 'power' for which the default is 1 i.e., a logit link.

ntrials A vector length 'n+1' representing the number of trials 'n' i.e., a vector with all elements equal to 'n'.

nsuccess A vector representing the frequency distribution of the binomial distribution for fixed number of trials 'n'.

covariates.matrix.p A matrix of covariates for the mean where rows are the number of values in list.binary and columns the covariates. This matrix is extracted from the formulae in function BinaryEPPM. However, in the accompanying example it is shown how it can be constructed independently of function BinaryEPPM.

covariates.matrix.scalef A matrix of covariates for the variance where rows are the number of values in list.binary and columns the covariates. The default is a vector of ones. This matrix is extracted from the formulae in function BinaryEPPM. However, in the accompanying example it is shown how it can be constructed independently of function BinaryEPPM.

offset.p An offset vector for the probability of success p. The default is a vector of ones.

offset.scalef An offset vector for the scale-factor. The default is a vector of ones.

weights A vector or list of weights for the modeling of probability of success. The default is a vector of ones.

grad.method Numerical method used to calculate gradients either simple or Richardson. The default is simple.

Value

The log likelihood is returned.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

Examples

```r
link <- 'cloglog'
attr(link, which="p") <- make.link(link)
nsuccess <- list(c(rep(0,5),352,479,530,291,101,17))
ntrials  <- list(c(rep(10,11)))
parameter <- c(0.06363398,-0.47085362)
LL.Regression.Binary(parameter, model.type = "p and scale-factor",
  model.name = "generalized binomial", link, ntrials, nsuccess,
  covariates.matrix.p = matrix(c(1), nrow=1),
  covariates.matrix.scalef = matrix(c(1), nrow=1),
  offset.p = c(0), offset.scalef = c(0),
  weights = list(c(rep(1,11))))
```

logLik.BinaryEPPM Extract Log-Likelihood

Description

This function is generic. It is a method for extracting the log-likelihood for objects of class "BinaryEPPM".

Usage

```r
## S3 method for class 'BinaryEPPM'
logLik(object, ...)
```

Arguments

- `object`: fitted model object of class "BinaryEPPM".
- `...`: some methods for this generic function require additional arguments

Details

logLik is most commonly used for a model fitted by maximum likelihood as is done here.

Value

The log likelihood value for the fitted model object.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

See Also

`betareg`
loglog

Log-log Link Function

Description
Computes the loglog link function, including its inverse.

Usage

```r
loglog()
```

Details
Same link function as in Cribari-Neto and Zeileis (2010).

Value
The loglog of theta where the logarithms are to base e.

Author(s)
David M. Smith <smithdm1@us.ibm.com>

References

Luningetal.litters *Number of trials (implantations) in data of Luning, et al., (1966)*

Description
The data are arranged as a list of frequency distributions of the number of female mice with 0, 1, 2, etc., dead where the number of implants 5 to 10, the number of implants being the length of the frequency distribution. Dose and number of implants are both included as both variates (vdose, litter.size) and as factors (fdose, flitter.size).

Usage

```r
data("Luningetal.litters")
```

21https://doi.org/10.18637/jss.v034.i02
Format

The format is: List of 3 $ vdose : num [1:3] 0 300 600 $ fdose : Factor w/ 3 levels "0","300","600":
1 2 3 $ number.dead:List of 18 ..$: num [1:6] 30 27 9 5 0 0 ..$: num [1:6] 27 41 32 17 4 0 ..$: num [1:6] 16 32 48 49 15 0 ..$: num [1:7] 86 51 14 4 1 0 0 ..$: num [1:7] 28 47 59 28 6 1 1 ..$: num [1:7] 7 35 45 37 20 9 0 ..$: num [1:8] 111 73 31 8 1 0 0 0 ..$: num [1:8] 31 61 54 20 19 1 0 0 ..$: num [1:8] 5 22 27 36 17 9 3 1 ..$: num [1:9] 79 44 23 3 0 1 0 0 0 ..$: num [1:9] 12 32 24 22 8 1 0 0 0 ..$: num [1:9] 1 4 12 11 8 7 0 2 0 ..$: num [1:10] 32 29 8 1 0 0 0 0 0 0 ..$: num [1:10] 1 6 9 6 1 0 0 0 ..$: num [1:10] 0 0 2 2 2 0 1 0 0 0 ..$: num [1:11] 5 5 2 0 0 0 0 0 0 0 0 ..$: num [1:11] 1 2 1 0 0 0 0 0 0 0 0 ..$: num [1:11] 0 0 0 0 0 0 0 1 0 0...

Source

Examples

data("Luningetal.litters")

Model.BCBinProb

Probabilities for beta and correlated binomial distributions given p's and scale-factors.

Description

Calculates the probabilities for beta and correlated binomials given values for p’s and scale-factors.

Usage

Model.BCBinProb(parameter, model.type, model.name, link, ntrials, covariates.matrix.p, covariates.matrix.scalef = matrix(c(rep(1, nrow(covariates.matrix.p))), ncol = 1), offset.p = c(rep(0, length(ntrials))), offset.scalef = c(rep(0, length(ntrials))))

Arguments

parameter
A vector of the parameters of the model which is set to initial estimates on function call.

model.type
Takes one of two values i.e. ‘p only’ or ‘p and scale-factor’. The ‘p only’ value fits a linear predictor function to the parameter p which is the ‘m(1)’ in equation (6) of Faddy and Smith (2012) divided by ‘N’. The ‘p and scale-factor’ value fits linear predictor functions to both p and the scale-factor.

model.name
The model being fitted is one of the two ‘beta binomial’ or ‘correlated binomial’.

link
Takes one of nine values i.e., 'logit', 'probit', 'cloglog', 'cauchit', 'log', 'loglog', 'double exponential', 'double reciprocal', 'power logit'. The default is 'cloglog'. The 'power logit' has an attribute of 'power' for which the default is 1 i.e., a logit link.
ntrials
This is a scalar representing the denominator i.e., the length of the probability mass function returned is this scalar + 1.

covariates.matrix.p
A matrix of covariates for p where rows are the number of values in listbinary and columns the covariates. This matrix is extracted from the formulae in function BinaryEPPM. However, in the accompanying example it is shown how it can be constructed independently of function BinaryEPPM.

covariates.matrix.scalef
A matrix of covariates for the scale-factor where rows are the number of values in listbinary and columns the covariates. The default is a vector of ones. This matrix is extracted from the formulae in function BinaryEPPM. However, in the accompanying example it is shown how it can be constructed independently of function BinaryEPPM.

offset.p
An offset vector for p. The default is a vector of ones.

offset.scalef
An offset vector for the scale-factor. The default is a vector of ones.

Value
List of arguments input together with a list of probabilities vectors and a data frame of values of p, theta (beta binomial) or rho (correlated binomial) and the limits for theta or rho.

model
The model is either 'beta binomial' or 'correlated binomial'.

link
The link is either 'logit' or 'cloglog'.

parameter
A vector of the parameters of the model which is set to initial estimates on function call.

probabilities
A list of the vectors of probabilities of the model.

probabilities
A data frame of values of p, theta (beta binomial) or rho (correlated binomial) and the limits for theta or rho.

Author(s)
David M. Smith <smithdm1@us.ibm.com>

References

Examples

```r
link <- 'cloglog'
attr(link, which="p") <- make.link(link)
parameter <- c(-0.68294630, 0.03451481)
names(parameter) <- c('p', 'rho')
model.type <- 'p and scale-factor'
model.name <- 'correlated binomial'
ntrials <- list(c(rep(10, 11)))
Model.BCBinProb(parameter, model.type, model.name, link, ntrials,
                   covariates.matrix.p = matrix(c(1), nrow=1),
                   covariates.matrix.scalef = matrix(c(1), nrow=1),
                   offset.p = c(0), offset.scalef = c(0))
```

Model.Binary
Function for obtaining output from distributional models.

Description

Produces output of model, parameters and probabilities from the various models.

Usage

```r
Model.Binary(parameter, model.type, model.name, link, ntrials, covariates.matrix.p, covariates.matrix.scalef, offset.p, offset.scalef)
```

Arguments

- `parameter` A vector of the parameters of the model which is set to initial estimates on function call.
- `model.type` Takes one of two values i.e. 'p only' or 'p and scale-factor'. The 'p only' value fits a linear predictor function to the parameter p which is the 'm(1)' in equation (6) of Faddy and Smith (2012) divided by 'N'. The 'p and scale-factor' value fits linear predictor functions to both p and the scale-factor.
- `model.name` If model.type is 'p only' the model being fitted is one of the six 'binomial', 'over-dispersed-one', 'over-dispersed-two', 'generalized binomial', 'beta binomial' or 'correlated binomial'. If model.type is 'p and scale-factor' the model being fitted is one of the three 'generalized binomial', 'beta binomial' or 'correlated binomial'.
- `link` Takes one of nine values i.e., 'logit', 'probit', 'cloglog', 'cauchit', 'log', 'loglog', 'double exponential', 'double reciprocal', 'power logit'. The default is 'cloglog'. The 'power logit' has an attribute of 'power' for which the default is 1 i.e., a logit link.
- `ntrials` This is a scalar representing the denominator i.e., the length of the probability mass function returned is this scalar + 1.
Model.Binary

covariates.matrix.p
A matrix of covariates for \(p \) where rows are the number of values in listbinary and columns the covariates. This matrix is extracted from the formulae in function BinaryEPPM. However, in the accompanying example it is shown how it can be constructed independently of function BinaryEPPM.

covariates.matrix.scalef
A matrix of covariates for the scale-factor where rows are the number of values in listbinary and columns the covariates. The default is a vector of ones. This matrix is extracted from the formulae in function BinaryEPPM. However, in the accompanying example it is shown how it can be constructed independently of function BinaryEPPM.

offset.p
An offset vector for \(p \). The default is a vector of ones.

offset.scalef
An offset vector for the scale-factor. The default is a vector of ones.

Value
Output which is the output from either Model.BCBinProb, Model.GB, Model.Binary, Model.JMVGB, or Model.ODB.

Author(s)
David M. Smith <smithdm1@us.ibm.com>

References

Examples

```r
link <- 'cloglog'
attr(link, which="p") <- make.link(link)
parameter <- c(-0.68294630,0.03451481)
names(parameter) <- c('p','rho')
model.type <- 'p and scale-factor'
model.name <- 'correlated binomial'
ntrials <- list(c(rep(10,11)))
Model.Binary(parameter, model.type, model.name, link, ntrials,
covariates.matrix.p = matrix(c(1),nrow=1),
covariates.matrix.scalef = matrix(c(1),nrow=1),
offset.p = c(0), offset.scalef = c(0))
```

22https://doi.org/10.1002/bimj.201100214
Model.GB

Probabilities for binomial and generalized binomial distributions
given p's and b.

Description

Calculates the probabilities for binomial and generalized binomial given values for p's and b.

Usage

Model.GB(parameter, model.name, link, ntrials, covariates.matrix.p, offset.p = c(rep(0, length(ntrials))))

Arguments

parameter A vector of the parameters of the model which is set to initial estimates on function call.
model.name The model being fitted is one of the two 'binomial' or 'generalized binomial'.
link Takes one of nine values i.e., 'logit', 'probit', 'cloglog', 'cauchit', 'log', 'loglog', 'double exponential', 'double reciprocal', 'power logit'. The default is 'cloglog'. The 'power logit' has an attribute of 'power' for which the default is 1 i.e., a logit link.
ntrials This is a scalar representing the denominator i.e., the length of the probability mass function returned is this scalar + 1.
covariates.matrix.p A matrix of covariates for p where rows are the number of values in listbinary and columns the covariates. This matrix is extracted from the formulae in function BinaryEPPM. However, in the accompanying example it is shown how it can be constructed independently of function BinaryEPPM.
offset.p An offset vector for p. The default is a vector of ones.

Value

List of arguments input together with a list of probabilities vectors and a data frame of values of a and b of Equation (5) of Faddy and Smith (2012).

model The model is either 'binomial' or 'generalized binomial'.
link The link is either 'logit' or 'cloglog'.
parameter A vector of the parameters of the model which is set to initial estimates on function call.
probabilities A list of the vectors of probabilities of the model.
Dparameters A data frame of values of a and b of Equation (5) of Faddy and Smith (2012).
Author(s)
David M. Smith <smithdm1@us.ibm.com>

References

Examples

```r
link <- 'cloglog'
attr(link, which="p") <- make.link(link)
parameter <- c(0.9423342,0.5846321)
names(parameter) <- c('p','b')
model.name <- 'generalized binomial'
ntrials <- list(c(rep(10,11)))
Model.GB(parameter, model.name, link, ntrials,
covariates.matrix.p = matrix(c(1),ncol=1),
offset.p = c(0))
```

Model.JMVGB

Probabilities for generalized binomial distributions given p’s and scale-factors.

Description
Calculates the probabilities for binomial and generalized binomial given values for p’s and scale-factors.

Usage

```r
Model.JMVGB(parameter, model.name, link, ntrials,
covariates.matrix.p, covariates.matrix.scalef,
offset.p = c(rep(0, length(ntrials))),
offset.scalef = c(rep(0, length(ntrials))))
```

Arguments

- `parameter`: A vector of the parameters of the model which is set to initial estimates on function call.
- `model.name`: The model being fitted is one of the two 'binomial' or 'generalized binomial'.
- `link`: Takes one of nine values i.e., 'logit', 'probit', 'cloglog', 'cauchit', 'log', 'loglog', 'double exponential', 'double reciprocal', 'power logit'. The default is 'cloglog'. The 'power logit' has an attribute of 'power' for which the default is 1 i.e., a logit link.

21https://doi.org/10.1002/bimj.201100214
ntrials
This is a scalar representing the denominator i.e., the length of the probability
mass function returned is this scalar + 1.
covariates.matrix.p
A matrix of covariates for p where rows are the number of values in listbinary
and columns the covariates. This matrix is extracted from the formulae in func-
tion BinaryEPPM. However, in the accompanying example it is shown how it
can be constructed independently of function BinaryEPPM.
covariates.matrix.scalef
A matrix of covariates for the scale-factor where rows are the number of values
in listbinary and columns the covariates. The default is a vector of ones. This
matrix is extracted from the formulae in function BinaryEPPM. However, in the
accompanying example it is shown how it can be constructed independently of
function BinaryEPPM.
offset.p
An offset vector for p. The default is a vector of ones.
offset.scalef
An offset vector for the scale-factor. The default is a vector of ones.

Value
List of arguments input together with a list of probabilities vectors and a data frame of values of a
and b of Equation (5) of Faddy and Smith (2012).

model
The model is either 'binomial' or 'generalized binomial'.
link
The link is either 'logit' or 'cloglog'.
parameter
A vector of the parameters of the model which is set to initial estimates on
function call.
probabilities
A list of the vectors of probabilities of the model.
Dparameters
A data frame of values of a and b of Equation (5) of Faddy and Smith (2012).

Author(s)
David M. Smith <smithdm1@us.ibm.com>

References

Examples
link <- 'cloglog'
attr(link, which="p") <- make.link(link)
parameter <- c(-0.68294630,0.03451481)
names(parameter) <- c('p','scale-factor')
model.name <- 'generalized binomial'
ntrials <- list(c(rep(10,11)))

24https://doi.org/10.1002/bimj.201100214
negcomplog

Negative complementary log-log Link Function

Description
Computes the negative complementary log-log link function, including its inverse.

Usage
negcomplog()

Value
The negative complementary log-log of theta.

Author(s)
David M. Smith <smithdm1@us.ibm.com>

References

Parkes.litters
The data are of the number of male piglets born in litters of varying sizes for the Parkes breed of pigs.

Description
The data are arranged as a list of binomial frequency distributions where the listing is by litter size which is included both as a variate (vsize) and as a factor (fsize)

Usage
data("Parkes.litters")
Format

The format is: List of 3 $ \text{fsize} \, $ Factor w/ 7 levels " size 5"," size 6"...: 1 2 3 4 5 6 7 $ \text{vsize} \, $ int [1:7] 5 6 7 8 9 10 11 $ \text{number.success} \, $ List of 7 $ \text{number.success} \, $: num [1:6] 2 20 41 14 4 5 $ \text{number.success} \, $: num [1:7] 3 16 53 78 53 18 0 $ \text{number.success} \, $: num [1:8] 0 21 63 117 104 46 21 2 $ \text{number.success} \, $: num [1:9] 1 8 37 81 162 77 30 5 1 $ \text{number.success} \, $: num [1:10] 0 23 72 101 83 46 12 7 0 $ \text{number.success} \, $: num [1:11] 0 7 8 19 79 82 48 24 10 0 ... $ \text{number.success} \, $: num [1:12] 0 1 3 15 15 33 13 12 8 1 ...

Source

Examples

data("Parkes.litters")

plot.BinaryEPPM Diagnostic Plots for BinaryEPPM Objects

Description

Various types of standard diagnostic plots can be produced, involving various types of residuals, influence measures etc.

Usage

S3 method for class 'BinaryEPPM'
plot(x, which = 1:4,
caption = c("Residuals vs indices of obs.", "Cook's distance plot", "Leverage vs predicted values", "Residuals vs linear predictor", "Normal Q-Q plot of residuals", "Predicted vs observed values"),
sub.caption = " ", main = " ",
ask = prod(par("mfcol"), 1) < length(which) && dev.interactive(), ...,
type = "spearson")

Arguments

x fitted model object of class "BinaryEPPM".
which numeric. If a subset of plots is required, specify a subset of the numbers 1:6.
caption character. Captions to appear above the plots.
sub.caption character. Common title-above figures if there are multiple.
main character. Title to each plot in addition to the above caption.
ask logical. If true, the user is asked before each plot.
... other parameters to be passed through to plotting functions.
type character indicating type of residual to be used, see residuals.BinaryEPPM.
Details

The plot method for BinaryEPPM objects produces various plots of diagnostic plots similar to those produced by \texttt{betareg}. See Ferrari and Cribari-Neto (2004) for further details of the displays of \texttt{betareg}.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

See Also

\texttt{plot.betareg}

Examples

```r
data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
                        number.spores / number.tested ~ 1 + offset(logdilution),
                        model.type = 'p only', model.name = 'binomial')
plot(output.fn, which = 1, type= "sdeviance")
```

powerlogit \hspace{1cm} \textit{Power Logit Link Function}

Description

Computes the power logit link function, including its inverse.

Usage

```r
powerlogit(power = 1)
```

Arguments

- `power` : power value for the power logit link function.

Value

The power logit transformation of theta. All logarithms are natural ones, i.e., to base e.

25https://doi.org/10.18637/jss.v034.i02
Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

predict.BinaryEPPM Prediction Method for BinaryEPPM Objects

Description

Extract various types of predictions from BinaryEPPM regression models.

Usage

S3 method for class 'BinaryEPPM'

Arguments

object fitted model object of class "BinaryEPPM".

newdata optionally, a data frame in which to look for variables with which to predict. If omitted, the original observations are used.

type character indicating type of predictions: fitted means of responses ("response"), linear predictors ("linear.predictor.p", "linear.predictor.scale.factor"), fitted value of probability of success ("p"), fitted value of scale-factor ("scale.factor"), fitted value of mean ("mean"), scale factor limits ("scale.factor.limits"), fitted value of variance ("variance"), fitted probability distribution ("distribution"), parameters of fitted distributions ("distribution.parameters")

na.action function determining what should be done with missing values in newdata. The default is to predict NA.

... some methods for this generic function require additional arguments.

Value

A vector or list of the predicted values from the fitted model object.

Author(s)

David M. Smith <smithdm1@us.ibm.com>
print.BinaryEPPM

References

See Also

predict.betareg

Examples

data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
 number.spores / number.tested ~ 1 + offset(logdilution),
 model.type = 'p only', model.name = 'binomial')
predict(output.fn, type = "response")
predict(output.fn, type = "linear.predictor.p")

print.BinaryEPPM Printing of BinaryEPPM Objects

Description

Prints objects of class "BinaryEPPM".

Usage

S3 method for class 'BinaryEPPM'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x fitted model object of class "BinaryEPPM".

digits digits of printed output.

... not currently used.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

26https://doi.org/10.18637/jss.v034.i02
27https://doi.org/10.18637/jss.v034.i02
print.summaryBinaryEPPM

See Also

betareg

Examples

data("ropespores.case")
BinaryEPPM(data = ropespores.case,
 number.spores / number.tested ~ 1 + offset(logdilution),
 model.type = 'p only', model.name = 'binomial')

print.summaryBinaryEPPM

Printing of summaryBinaryEPPM Objects

Description

Prints the objects of class "summaryBinaryEPPM".

Usage

S3 method for class 'summaryBinaryEPPM'
print(x, ...)

Arguments

x object output by summary.BinaryEPPM.
... not currently used.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

See Also

betareg

Examples

data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
 number.spores / number.tested ~ 1 + offset(logdilution),
 model.type = 'p only', model.name = 'binomial')
print(summary(output.fn))

https://doi.org/10.18637/jss.v034.i02
residuals.BinaryEPPM

Residuals for BinaryEPPM Objects

Description

This function is generic. Extract various types of residuals from objects of class "BinaryEPPM".

Usage

S3 method for class 'BinaryEPPM'
residuals(object, type = c("spearson", "deviance", "pearson", "response", "likelihood", "sdeviance"), ...)

Arguments

- **object**: Fitted model object of class "BinaryEPPM".
- **type**: Type of residuals wanted i.e., standardized Pearson "spearson", deviance "deviance", Pearson "pearson", response "response", likelihood "likelihood", standardized deviance "sdeviance".
- ... some methods for this generic function require additional arguments.

Details

Residuals as Cribari-Neto and Zeileis (2010).

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

See Also

residuals.betareg

https://doi.org/10.18637/jss.v034.i02
Description

Dilution series where at each dilution of a suspension of potato flour a number of samples were examined for the presence of rope spores. These data are in data frame form.

Usage

data("ropespores.case")

Format

A data frame with 10 observations on the following 5 variables.

- v dilution, a numeric vector
- fdilution, a factor with levels 0.25 0.5 1 2 4 8 16 32 64 128
- logdilution, a numeric vector
- number.spores, a numeric vector
- number.tested, a numeric vector

Source

Examples

data("ropespores.case")

Description

Dilution series where at each dilution of a suspension of potato flour a number of samples were examined for the presence of rope spores. These data are in list form.

Usage

data("ropespores.grouped")
Format

The format is: List of 4 $vdilution : num [1:10] 0.25 0.5 1 2 4 8 16 32 64 128 $fdilution : Factor w/ 10 levels "0.25","0.5","1",..: 1 2 3 4 5 6 7 8 9 10 $offset.p : num [1:10] 1.386 0.693 0 -0.693 -1.386 .. $number.spores:List of 10 ..$: num [1:6] 0 0 0 0 0 1 ..$: num [1:6] 0 0 0 0 0 1 ..$: num [1:6] 0 0 0 0 0 1 ..$: num [1:6] 0 0 0 0 0 1 ..$: num [1:6] 0 0 0 0 0 1 ..$: num [1:6] 0 0 0 0 0 1 ..$: num [1:6] 0 0 0 0 0 1 ..$: num [1:6] 0 0 0 0 0 1 ..$: num [1:6] 1 0 0 0 0 0 ..$: num [1:6] 1 0 0 0 0 0

Source

Examples

data("ropespores.grouped")

summary.BinaryEPPM Summary of BinaryEPPM Objects

Description

This function is generic. Summary of objects of class "BinaryEPPM".

Usage

S3 method for class 'BinaryEPPM'
summary(object, ...)

Arguments

object Fitted model object of class "BinaryEPPM".

... some methods for this generic function require additional arguments.

Details

Similar output to that of summary.glm "summary.glm" and summary.betareg Cribari-Neto and Zeileis (2010).

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

30https://doi.org/10.18637/jss.v034.i02
Titanic.survivors.case

Individual case data of Titanic survivors

Description

These data are from the survival log of the Titanic and consist of the number of survivors out of the number of passengers broken down into age, sex and class categories.

Usage

```r
data(Titanic.survivors.case)
```

Format

A data frame with 12 observations on the following 5 variables.

- `age`: a factor with levels `child`, `adult`
- `number.passengers`: a numeric vector
- `number.survive`: a numeric vector
- `pclass`: a factor with levels `1st class`, `2nd class`, `3rd class`
- `sex`: a factor with levels `female`, `male`

Details

Hilbe (2011) first models these data as a logistic model, then finding that they are overdispersed, models them as count data (number of survivors, survive) with offset (log of the number of passengers, cases).

Source

References

Examples

```r
data(Titanic.survivors.case)
```
Titanic.survivors.grouped

Titanic survivors data in frequency distribution form.

Description

These data are from the survival log of the Titanic and consist of the number of survivors out of the number of passengers broken down into age, sex and class categories. The data are in frequency distribution form i.e., a distribution as a list of numbers surviving for each age, sex and class category.

Usage

data("Titanic.survivors.grouped")

Format

The format is: List of 4 $ age : Factor w/ 2 levels "child","adult": 1 2 1 2 1 2 1 2 ... $ sex : Factor w/ 2 levels "female","male": 1 1 2 2 1 2 2 1 ... $ pclass : Factor w/ 3 levels "1st class","2nd class","3rd class": 1 1 1 1 2 2 2 3 ... $ number.survive:List of 12 ..$: num [1:2] 0 1 ..$: num [1:145] 0 0 0 0 0 0 0 0 0 0$: num [1:14] 0 0 0 0 0 0 0 0 0 0$: num [1:169] 0 0 0 0 0 0 0 0 0 0$: num [1:32] 0 0 0 0 0 0 0 0 0 0$: num [1:463] 0 0 0 0 0 0 0 0 0 0 ...

Details

Hilbe (2011) first models these data as a logistic model, then finding that they are overdispersed, models them as count data (number of survivors, survive) with offset (log of the number of passengers, cases).

Source

References

Examples

data(Titanic.survivors.grouped)
vcov.BinaryEPPM
Variance/Covariance Matrix for Coefficients

Description

Variance/covariance matrix for coefficients of fitted model.

Usage

```r
## S3 method for class 'BinaryEPPM'
vcov(object, model = c("full", "p", "scale.factor"), ...)
```

Arguments

- `object`
 fitted model object of class "BinaryEPPM".

- `model`
 character indicating variance/covariance matrix for all coefficients to be output:
 all coefficients ("full"), variance/covariance matrix for coefficients of probability of success ("p"), variance/covariance matrix for coefficients of scale-factor ("scale.factor")

- `...`

Value

The variance/covariance matrix of the parameters of the fitted model object.

Author(s)

David M. Smith <smithdm1@us.ibm.com>

References

doi: 10.18637/jss.v034.i02.

See Also

- `betareg`

Examples

```r
data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
                         number.spores / number.tested ~ 1 + offset(logdilution),
                         model.type = 'p only', model.name = 'binomial')
vcov(output.fn)
```

31https://doi.org/10.18637/jss.v034.i02
waldtest.BinaryEPPM

Wald Test of Nested Models for BinaryEPPM Objects

Description

waldtest is a generic function for comparisons of nested (generalized) linear models via Wald tests.

Usage

S3 method for class 'BinaryEPPM'
waldtest(object, ..., vcov = NULL,
 test = c("Chisq", "F"))

Arguments

object an object of class "BinaryEPPM".

... further object specifications passed to methods. See below for details.

vcov a function for estimating the covariance matrix of the regression coefficients. If only two models are compared it can also be the covariance matrix of the more general model.

test character specifying whether to compute the large sample Chi-squared statistic (with asymptotic Chi-squared distribution) or the finite sample F statistic (with approximate F distribution).

Details

waldtest is a generic function for comparisons of nested (generalized) linear models via Wald tests. It does not have the same functionality as the versions of betareg and lmtest with a reduced list of arguments. With these caveats, more details can be obtained from the Details pages of those packages.

Value

An object of class "anova" which contains the residual degrees of freedom, the difference in degrees of freedom, Wald statistic (either "Chisq" or "F") and corresponding p value.

Author(s)

David M. Smith <smithdm1@us.ibm.com>
Williams.litters

Number of implantations, data of Williams (1996).

Description
The data is arranged as a list of frequency distributions of numbers of surviving foetuses for a given litter size. The litter size is the length of the frequency distribution. Dose is included both as a variate (vdose) and as a factor (fdose).

Usage

data("Williams.litters")

Format
The format is: List of 3 $vdose: num [1:34] 0.75 1.5 1.5 0.75 1.5 3 0.75 1.5 3 ... $fdose: Factor w/ 4 levels "0","0.75","1.5": 2 3 3 1 2 3 4 2 3 4 ...

References

See Also
waldtest betareg

Examples

Not run:
data("ropespores.case")
output.fn <- BinaryEPPM(data = ropespores.case,
number.spores / number.tested ~ 1 + offset(logdilution),
model.type = 'p only', model.name = 'binomial')
output.fn.one <- BinaryEPPM(data = ropespores.case,
number.spores / number.tested ~ 1 + offset(logdilution),
model.type = 'p only', model.name = 'beta binomial')
waldtest(output.fn, output.fn.one, test = c("Chisq", "F"),
vcov = vcov)
End(Not run)
Yorkshires.litters

The data are of the number of male piglets born in litters of varying sizes for the Yorkshire breed of pigs.

Source

References

Examples

data("Williams.litters")

Description

The data are arranged as a list of binomial frequency distributions where the listing is by litter size which is included both as a variate (vsize) and as a factor (fsize)

Usage

data("Yorkshires.litters")

Format

Source

Examples

data("Yorkshires.litters")