Package ‘CFAcoop’

June 11, 2021

Type Package
Title Colony Formation Assay: Taking into Account Cellular Cooperation
Version 1.0.0
Maintainer Daniel Samaga <daniel.samaga@helmholtz-muenchen.de>
Depends R (>= 3.5.0)
URL https://github.com/ZytoHMGU/CFAcoop
BugReports https://github.com/ZytoHMGU/CFAcoop/issues
Description Cellular cooperation compromises the plating efficiency-based analysis of clonogenic survival data. This tool provides functions that enable a robust analysis of colony formation assay (CFA) data in presence or absence of cellular cooperation. The implemented method has been described in Brix et al. (2020). (Brix, N., Samaga, D., Hennel, R. et al. "The clonogenic assay: robustness of plating efficiency-based analysis is strongly compromised by cellular cooperation." Radiat Oncol 15, 248 (2020). <doi:10.1186/s13014-020-01697-y>) Power regression for parameter estimation, calculation of survival fractions, uncertainty analysis and plotting functions are provided.
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
Imports Hmisc
Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr
NeedsCompilation no
Author Daniel Samaga [cre, aut], Nikko Brix [aut], Kirsten Lauber [aut], Horst Zitzelsberger [aut]
Repository CRAN
Date/Publication 2021-06-11 09:10:08 UTC
R topics documented:

analyze_survival ... 2
calculate_sf .. 3
CFAdverts ... 4
export_sf ... 4
plot_sf ... 5
pwr_reg ... 7

Description

wrapper function for robust analysis of clonogenic survival data from the colony formation assay according to Brix et al. (2020), Radiation Oncology. Mean values are calculated and used for power regression. Resulting coefficients are used for calculation of survival fractions and corresponding uncertainty analysis.

Usage

```r
analyze_survival(RD, name = "no name", xtreat = NULL, C = 20)
```

Arguments

- **RD**: data.frame or matrix containing a table of experiment data
- **name**: optional: experiment name (e.g. name of cell line)
- **xtreat**: optional: treatment dose of the colonies counted in the corresponding columns of RD
- **C**: number of colonies counted for which the survival fraction is to be calculated (default = 20)

Value

list object containing several experiments and treatments organized for convenient plotting with `plot_sf`

Examples

```r
seeded <- rep(10^(seq(1,5,0.5)),each = 3)
df.1 <- data.frame(
  "seeded" = seeded,
  "counted1" = 0.4 * seeded^1.1 * rnorm(n = length(seeded),1,0.05),
  "counted2" = 0.2 * seeded^1.125 * rnorm(n = length(seeded),1,0.05),
  "counted3" = 0.05 * seeded^1.25 * rnorm(n = length(seeded),1,0.05))
df.2 <- data.frame("seeded" = seeded,
```
"counted1" = 0.5 * seeded^1.01 * rnorm(n = length(seeded),1,0.05),
"counted2" = 0.4 * seeded^1.0125 * rnorm(n = length(seeded),1,0.05),
"counted3" = 0.2 * seeded^1.025 * rnorm(n = length(seeded),1,0.05))
SF <- vector("list",2)
SF[[1]] <- analyze_survival(RD = df.1,
 name = "cell line a",
 xtreat = c(0,1,4),
 C = 20)
SF[[2]] <- analyze_survival(RD = df.2,
 name = "cell line b",
 xtreat = c(0,1,4))

Description

calculates the survival fraction according to the procedure presented in Brix et al. (2020), which is robust against cellular cooperation.

Usage

`calculate_sf(par_ref, par_treat, C = 20)`

Arguments

- `par_ref` is a summary.lm object or 2-column matrix for the treatment-free reference survival
- `par_treat` is a summary.lm object or 2-column matrix for the clonogenic survival after treatment
- `C` is the colony number for which the survival fraction is calculated (default = 20)

Value

survival fractions. If `par_ref` and `par_treat` are summary.lm objects, a scalar is returned. If `par_ref` and `par_treat` are matrices, a vector of the same length as `nrow(par_treat)` is returned

Examples

```r
seeded <- 10^seq(1, 5, 0.5)
counted.ref <- 0.4 * 10^(seq(1, 5, 0.5) + rnorm(n = 9, 0, 0.1))^1.1
counted.treat <- 0.01 * 10^(seq(1, 5, 0.5) + rnorm(n = 9, 0, 0.1))^1.2
fit_ref <- pwr_reg(seeded = seeded, counted = counted.ref)
fit_treat <- pwr_reg(seeded = seeded, counted = counted.treat)
calculate_sf(par_ref = fit_ref, par_treat = fit_treat)
data("CFAdata")
D <- subset.data.frame(
  x = CFAdata,
  subset = cell.line == levels(CFAdata$cell.line)[1]
)
```

```
fit_ref <- pwr_reg(seeded = D$'Cells seeded', counted = D$'0 Gy')
fit_treat <- pwr_reg(seeded = D$'Cells seeded', counted = D$'4 Gy')
calculate_sf(par_ref = fit_ref, par_treat = fit_treat)

CFAdata

Colony Formation Assay data on cellular cooperation

Description

Clonogenic survival data from seven cell lines T47D, MDA-MB231, A549, HCC1806, SKBR3, SKLU1 and BT20 as presented in Figure 2 in Brix et al. (2020).

Usage

data(CFAdata)

Format

data.frame

References


Examples

data(CFAdata)
head(CFAdata)
c1l <- levels(CFAdata$cell.line)

export_sf

Description

export table with results of clonogenic survival analysis from the colony formation assay considering cellular cooperation

Usage

export_sf(SF)

Arguments

SF list build of objects returned by analyze_survival
Value

data.frame containing all estimated coefficients and effects from all experiments contained in SF

Examples

seeded <- rep(10^(seq(1, 5, 0.5)), each = 3)
df.1 <- data.frame(
  "seeded" = seeded,
  "counted1" = 0.4 * seeded^1.1 * rnorm(n = length(seeded), 1, 0.05),
  "counted2" = 0.2 * seeded^1.125 * rnorm(n = length(seeded), 1, 0.05),
  "counted3" = 0.05 * seeded^1.25 * rnorm(n = length(seeded), 1, 0.05)
)
df.2 <- data.frame(
  "seeded" = seeded,
  "counted1" = 0.5 * seeded^1.01 * rnorm(n = length(seeded), 1, 0.05),
  "counted2" = 0.4 * seeded^1.0125 * rnorm(n = length(seeded), 1, 0.05),
  "counted3" = 0.2 * seeded^1.025 * rnorm(n = length(seeded), 1, 0.05)
)
SF <- vector("list", 2)
SF[[1]] <- analyze_survival(
  RD = df.1, name = "cell line a",
  xtreat = c(0, 1, 4)
)
SF[[2]] <- analyze_survival(
  RD = df.2, name = "cell line b",
  xtreat = c(0, 1, 4)
)
export_sf(SF)

data("CFAdata")
SF <- vector("list", 4)
ll <- levels(CFAdata$cell.line)[c(1, 3, 5, 7)]
for (i in seq_along(ll)) {
  cdat <- subset.data.frame(
    x = CFAdata,
    subset = CFAdata$cell.line == ll[i]
  )
  SF[[i]] <- analyze_survival(
    RD = cdat[, -1],
    name = ll[i],
    xtreat = c(0, 1, 2, 4, 6, 8)
  )
}
export_sf(SF)

Description

plot cellular cooperativity and clonogenic survival for colony formation assay data
Usage

plot sf(SF, showUncertainty = TRUE)

Arguments

SF list build of objects returned by analyze_survival
showUncertainty logical, switches on/off uncertainty bands for sf-values.

Value

none

Examples

seeded <- rep(10^seq(1, 5, 0.5), each = 3)
df.1 <- data.frame(  
  "seeded" = seeded,  
  "counted1" = 0.4 * seeded^1.1 * rnorm(n = length(seeded), 1, 0.05),  
  "counted2" = 0.2 * seeded^1.125 * rnorm(n = length(seeded), 1, 0.05),  
  "counted3" = 0.05 * seeded^1.25 * rnorm(n = length(seeded), 1, 0.05)
)
df.2 <- data.frame(  
  "seeded" = seeded,  
  "counted1" = 0.5 * seeded^1.01 * rnorm(n = length(seeded), 1, 0.05),  
  "counted2" = 0.4 * seeded^1.0125 * rnorm(n = length(seeded), 1, 0.05),  
  "counted3" = 0.2 * seeded^1.025 * rnorm(n = length(seeded), 1, 0.05)
)
SF <- vector("list", 2)
SF[[1]] <- analyze_survival(  
  RD = df.1, name = "cell line a",  
  xtreat = c(0, 1, 4)
)
SF[[2]] <- analyze_survival(  
  RD = df.2, name = "cell line b",  
  xtreat = c(0, 1, 4)
)
plot sf(SF)
data("CFAdatal"
SF <- vector("list", 4)
l1 <- levels(CFAdatal$cell.line)[c(1, 3, 5, 7)]
for (i in seq_along(l1)) {
  cdat <- subset.data.frame(  
    x = CFAdatal,  
    subset = CFAdatal$cell.line == l1[i]
  )
  SF[[i]] <- analyze_survival(  
    RD = cdat[, -1],  
    name = l1[i],  
    xtreat = c(0, 1, 2, 4, 6, 8)
**Description**

`pwr_reg` performs a power regression (\( \log(C) = \log(a) + b \cdot \log(S) + e \)) for clonogenic assay data of experiments examining the cellular cooperation.

**Usage**

```r
pwr_reg(seeded, counted)
```

**Arguments**

- `seeded`: numeric vector with number of cells seeded (S)
- `counted`: numeric vector with number of colonies counted (C, same length as `seeded`)

**Value**

`summary.lm` object as returned by `summary`

**Examples**

```r
pwr_reg(
 seeded = 10^(seq(1, 5, 0.5)),
 counted = 0.4 * (10^seq(1, 5, 0.5))^1.25 * rnorm(n = 9, 1, 0.05)
)
data(CFAdata)
D <- subset.data.frame(
 x = CFAdata,
 subset = cell.line == levels(CFAdata$cell.line)[1]
)pwr_reg(seeded = D`Cells seeded`, counted = D`0 Gy`)```
Index

* dataset
 CFAdata, 4

analyze_survival, 2

calculate_sf, 3
CFAdata, 4

export_sf, 4

plot_sf, 5
pwr_reg, 7

summary, 7