Package ‘CVR’

March 22, 2017

Type Package

Title Canonical Variate Regression

Version 0.1.1

Date 2017-03-17

Author Chongliang Luo, Kun Chen.

Maintainer Chongliang Luo <chongliang.luo@uconn.edu>

Description Perform canonical variate regression (CVR) for two sets of covariates and a univariate response, with regularization and weight parameters tuned by cross validation.

License GPL (>= 2)

LinkingTo Rcpp, RcppArmadillo

Imports Rcpp

Depends R (>= 3.2.1), PMA

RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2017-03-22 14:13:03 UTC

R topics documented:

- CVR-package .. 2
- alcohol .. 3
- CVR ... 4
- cvrsolver ... 6
- mouse ... 8
- plot.CVR ... 9
- SimulateCVR .. 10
- SparseCCA ... 12

Index 14
CVR-package

Canonical Variate Regression

Description

Perform canonical variate regression (CVR) for two sets of covariates and a univariate response, with regularization and weight parameters tuned by cross validation.

Details

Index of help topics:

- CVR: Fit canonical variate regression with tuning parameters selected by cross validation.
- CVR-package: Canonical Variate Regression
- SimulateCVR: Generate simulation data.
- SparseCCA: Sparse canonical correlation analysis.
- alcohol: Data sets for the alcohol dependence example
- cvrsolver: Canonical Variate Regression.
- mouse: Data sets for the mouse body weight example
- plot.CVR: Plot a CVR object.

functions: cvrsolver, SparseCCA, SimulateCVR, CVR, plot.CVR.

Author(s)

Chongliang Luo, Kun Chen.

Maintainer: Chongliang Luo <chongliang.luo@uconn.edu>

References

See Also

PMA.
alcohol

Data sets for the alcohol dependence example

Description

A list of 3 data frames that contains the gene expression, DNA methylation and AUD (alcohol use disorder) of 46 human subjects. The data is already screened for quality control. For the raw data see the link below. For more details see the reference.

Usage

alcohol

Format

A list of 3 data frames:

- **gene**: Human gene expression. A data frame of 46 rows and 300 columns.
- **meth**: Human DNA methylation. A data frame of 46 rows and 500 columns.
- **disorder**: Human AUD indicator. A data frame of 46 rows and 1 column. The first 23 subjects are AUDs and the others are matched controls.

Source

References

Examples

```r
# Alcohol dependence example

# Load data
data(alcohol)
gene <- scale(as.matrix(alcohol$gene))
meth <- scale(as.matrix(alcohol$meth))
disorder <- as.matrix(alcohol$disorder)

# Create a list of 3 data frames
alcohol.X <- list(X1 = gene, X2 = meth)

# Perform CVR
foldid <- c(rep(1:5, 4), c(3,4,5), rep(1:5, 4), c(1,2,5))

# Table for foldid and disorder

# CVR with small sample size
alcohol.cvr <- cvr(disorder, alcohol.X, rankseq = 2, etaseq = 0.02,
                   family = "b", penalty = "L1", foldid = foldid)

# Plot CVR
plot(alcohol.cvr)

# Correlation between gene and meth
plot(gene %*% alcohol.cvr$solution$W[[1]][, 1],
meth %*% alcohol.cvr$solution$W[[2]][, 1])

# Correlation between gene and meth
cor(gene %*% alcohol.cvr$solution$W[[1]],
meth %*% alcohol.cvr$solution$W[[2]])
```
CVR

Fit canonical variate regression with tuning parameters selected by cross validation.

Description

This function fits the solution path of canonical variate regression, with tuning parameters selected by cross validation. The tuning parameters include the rank, the \(\eta \) and the \(\lambda \).

Usage

```r
CVR(y, Xlist, rankseq = 2, neta = 10, etaseq = NULL, nlam = 50,
Lamseq = NULL, family = c("gaussian", "binomial", "poisson"),
Wini = NULL, penalty = c("GL1", "L1"), nfold = 10, foldid = NULL,
opts = list(), type.measure = NULL)
```

Arguments

- **Y**: A univariate response variable.
- **Xlist**: A list of two covariate matrices as in `cvrsolver`.
- **rankseq**: A sequence of candidate ranks. The default is a single value 2.
- **neta**: Number of \(\eta \) values. The default is 10.
- **etaseq**: A sequence of length `neta` containing candidate \(\eta \) values between 0 and 1. The default is \(10^{\text{seq}(-2, \log_{10}(0.9), \text{length} = \text{neta})} \).
- **nlam**: Number of \(\lambda \) values. The default is 50.
- **Lamseq**: A matrix of \(\lambda \) values. The column number is the number of sets in `Xlist`, and the row number is `nlam`. The default is \(10^{\text{seq}(-2, 2, \text{length} = \text{nlam})} \) for each column.
- **family**: Type of response as in `cvrsolver`. The default is "gaussian".
- **Wini**: A list of initial loading W’s. The default is from the SparseCCA solution. See `SparseCCA`.
- **penalty**: Type of penalty on loading matrices W's as in `cvrsolver`. The default is "GL1".
- **nfold**: Number of folds in cross validation. The default is 10.
- **foldid**: Specifying training and testing sets in cross validation; random generated if not supplied. It remains the same across different rank and \(\eta \).
- **opts**: A list of options for controlling the algorithm. The default of `optssspthresh` is 0.4, which means we only search sparse models with at most 40% nonzero entries in W1 and W2. See the other options (`standardization`, `maxIters` and `tol`) in `cvrsolver`.
- **type.measure**: Type of measurement used in cross validation. "mse" for Gaussian, "auc" for binomial, and "deviance" for binomial and Poisson.
Details

In this function, the rank, \(\eta \) and \(\lambda \) are tuned by cross validation. CVR then is refitted with all data using the selected tuning parameters. The `plot` function shows the tuning of \(\lambda \), with selected rank and \(\eta \).

Value

An object with S3 class "CVR" containing the following components:

- `cverror`: A matrix containing the CV errors. The number of rows is the length of `etaseq` and the number of columns is the length of `rankseq`.
- `etahat`: Selected \(\eta \).
- `rankhat`: Selected rank.
- `Lamhat`: Selected \(\lambda \)’s.
- `Alphapath`: An array containing the fitted paths of the intercept term \(\alpha \).
- `Betapath`: An array containing the fitted paths of the regression coefficient \(\beta \).
- `W1path`, `W2path`: Arrays containing the fitted paths of \(W_1 \) and \(W_2 \).
- `foldid`: `foldid` used in cross validation.
- `cvout`: Cross validation results using selected \(\eta \) and rank.
- `solution`: A list including the solutions of \(\alpha \), \(\beta \), \(W_1 \) and \(W_2 \), by refitting all the data using selected tuning parameters.

Author(s)

Chongliang Luo, Kun Chen.

References

See Also

cvrsolver, SparseCCA, SimulateCVR.

Examples

```
set.seed(42)
mydata <- SimulateCVR(family = "g", n = 100, rank = 4, pl = 50, p2 = 70, pnz = 10, beta = c(2, 1, 0, 0))
X1 <- mydata$X1;
X2 <- mydata$X2
Xlist <- list(X1 = X1, X2 = X2);
Y <- mydata$y
## fix rank = 4, tune eta and lambda
##out_cvr <- CVR(Y, Xlist, rankseq = 4, neta = 5, nlam = 25,
```
cvrsolver

```r
## family = "g", nfold = 5)
## out_cvr$solution$W[[1]];
## out_cvr$solution$W[[2]];
## uncomment to see plots
## plot.CVR(out_cvr)
##
## Distance of subspaces
## U <- mydata$U
## JJ <- function(U) U %*% solve(t(U) %*% U, t(U))
## sum((JJ(x1) %*% out_cvr$sol$W[[1]]) + JJ(x2 %*% out_cvr$sol$W[[2]]))/2)^2
##
## the first 10 rows of the true W1 and W2 are set to be nonzero
## WW12 <- rbind(out_cvr$sol$W[[1]], out_cvr$sol$W[[1]]);
## WW2norm <- apply(WW12, 1, function(a)sqrt(sum(a^2)))
## %prec <- sum(WW2norm == 0)/sum(WW2norm != 0); prec
## %rec <- sum(WW2norm == 0)/20; rec
## sequential SparseCCA, compare the Distance of subspaces and Prec/Rec
## WW1s <- SparseCCA(X1, X2, 4)
## Distance larger than CVR's
## sum((JJ(x1) %*% WW1s$W1) + JJ(x2 %*% WW1s$W2))/2)^2
## WW2snorm <- apply(rbind(WW1s$W1, WW1s$W2), 1, function(a)sqrt(sum(a^2)))
## compare Prec/Rec
## sum(WW2snorm == 0)/sum(WW2snorm != 0);
## sum(WW2snorm == 0)/20;

# binary response
set.seed(12)
mydata <- SimulateCVR(family = "binomial", n = 300, rank = 4, p1 = 50, p2 = 70, pnz = 10, beta = c(2, 1, 0, 0))
X1 <- mydata$X1; X2 <- mydata$X2
Xlist <- list(X1 = X1, X2 = X2);
Y <- mydata$y
## out_cvr <- CVR(Y, Xlist, 4, neta = 5, nlam=25, family = "b", nfold = 5)
## out_cvr$sol$W[[1]];
## out_cvr$sol$W[[2]];
## plot.CVR(out_cvr)

# Poisson response
set.seed(34)
mydata <- SimulateCVR(family = "p", n = 100, rank = 4, p1 = 50, p2 = 70, pnz = 10, beta = c(0.2, 0.1, 0, 0))
X1 <- mydata$X1; X2 <- mydata$X2
Xlist <- list(X1 = X1, X2 = X2);
Y <- mydata$y
## etaseq <- 10^seq(-3, log10(0.95), len = 10)
## out_cvr <- CVR(Y, Xlist, 4, neta = 5, nlam = 25, family = "p", nfold = 5)
## out_cvr$sol$W[[1]];
## out_cvr$sol$W[[2]];
## plot.CVR(out_cvr)
```

cvrsolver
Canonical Variate Regression.
Description

Perform canonical variate regression with a set of fixed tuning parameters.

Usage

```r
cvrsolver(Y, Xlist, rank, eta, Lam, family, Wini, penalty, opts)
```

Arguments

- **Y**: A response matrix. The response can be continuous, binary or Poisson.
- **Xlist**: A list of covariate matrices. Cannot contain missing values.
- **rank**: Number of pairs of canonical variates.
- **eta**: Weight parameter between 0 and 1.
- **Lam**: A vector of penalty parameters \(\lambda \) for regularizing the loading matrices corresponding to the covariate matrices in Xlist.
- **family**: Type of response. "gaussian" if Y is continuous, "binomial" if Y is binary, and "poisson" if Y is Poisson.
- **Wini**: A list of initial loading matrices W's. It must be provided. See cvr and scca for using sCCA solution as the default.
- **penalty**: Type of penalty on W's. "GL1" for rowwise sparsity and "L1" for entrywise sparsity.
- **opts**: A list of options for controlling the algorithm. Some of the options are: `standardization`: need to standardize the data? Default is TRUE. `maxIters`: maximum number of iterations allowed in the algorithm. The default is 300. `tol`: convergence criterion. Stop iteration if the relative change in the objective is less than tol.

Details

CVR is used for extracting canonical variates and also predicting the response for multiple sets of covariates (Xlist = list(X1, X2)) and response (Y). The covariates can be, for instance, gene expression, SNPs or DNA methylation data. The response can be, for instance, quantitative measurement or binary phenotype. The criterion minimizes the objective function

\[
\frac{\eta}{2} \sum_{k<j} ||X_k W_k - X_j W_j||^2_F + (1 - \eta) \sum_k l_k(\alpha, \beta, Y, X_k W_k) + \sum_k \rho_k(\lambda_k, W_k),
\]

s.t. \(W_k' X_k X_k W_k = I_r \), for \(k = 1, 2, \ldots, K \). \(l_k() \) are general loss functions with intercept \(\alpha \) and coefficients \(\beta \). \(\eta \) is the weight parameter and \(\lambda_k \) are the regularization parameters. \(r \) is the rank, i.e. the number of canonical pairs. By adjusting \(\eta \), one can change the weight of the first correlation term and the second prediction term. \(\eta = 0 \) is reduced rank regression and \(\eta = 1 \) is sparse CCA (with orthogonal constrained W's). By choosing appropriate \(\lambda_k \) one can induce sparsity of \(W_k \)'s to select useful variables for predicting Y. \(W_k \)'s with \(B_k \)'s and \((\alpha, \beta) \) are iterated using an ADMM algorithm. See the reference for details.
Value

An object containing the following components

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>iter</td>
<td>The number of iterations the algorithm takes.</td>
</tr>
<tr>
<td>(w)</td>
<td>A list of fitted loading matrices.</td>
</tr>
<tr>
<td>(B)</td>
<td>A list of fitted (B_k)’s.</td>
</tr>
<tr>
<td>(Z)</td>
<td>A list of fitted (B_k W_k)’s.</td>
</tr>
<tr>
<td>alpha</td>
<td>Fitted intercept term in the general loss term.</td>
</tr>
<tr>
<td>beta</td>
<td>Fitted regression coefficients in the general loss term.</td>
</tr>
<tr>
<td>objvals</td>
<td>A sequence of the objective values.</td>
</tr>
</tbody>
</table>

Author(s)

Chongliang Luo, Kun Chen.

References

See Also

`simulatecvr`, `cvr`.

Examples

```r
# see simulatecvr for simulation examples, see cvr for parameter tuning.
```

mouse

Data sets for the mouse body weight example

Description

A list of 3 data frames that contains the genotype, gene expression and body-mass index of 294 mice. The data is already screened for quality control. For the raw data see the links below. For more details see the reference.

Usage

`mouse`

Format

A list of 3 data frames:

- **geno** Mouse genotype. A data frame of 294 rows and 163 columns.
- **expr** Mouse gene expression. A data frame of 294 rows and 215 columns.
- **bmi** Mouse body-mass index. A data frame of 294 rows and 1 column.
Source

Mouse genotype: http://www.genetics.org/cgi/content/full/genetics.110.116087/DC1
Mouse body-mass index: http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/MouseWeight/.

References

Examples

```r
# Mouse body weight example

data(mouse)
expr <- scale(as.matrix(mouse$expr))
geno <- scale(as.matrix(mouse$geno))
bmi <- as.matrix(mouse$bmi)
mouse.X <- list(X1 = expr, X2 = geno)

# Not run:
mouse.cvr <- CVR(bmi, mouse.X, rankseq = 2, etaseq = 0.04, family = "g", penalty = "L1")
plot(mouse.cvr)
plot(expr %*% mouse.cvr$solution$W[[1]][, 2], geno %*% mouse.cvr$solution$W[[2]][, 2])
cor(expr %*% mouse.cvr$solution$W[[1]], geno %*% mouse.cvr$solution$W[[2]])

# End(Not run)
```

plot.CVR

Plot a CVR object.

Description

Plot the tuning of CVR

Usage

```r
## S3 method for class 'CVR'
plot(x, ...)
```

Arguments

- `x` A CVR object.
- `...` Other graphical parameters used in plot.
Details

The first plot is mean cv error vs log(λ). The type of mean cv error is decided by type.measure (see parameters of CVR). The selected λ is marked by a vertical line in the plot. The second plot is sparsity vs log(λ). Sparsity is the proportion of non-zero elements in fitted W1 and W2. The threshold is marked by a horizontal line. Press ENTER to see the second plot, which shows the tuning of η.

SimulateCVR

Generate simulation data.

Description

Generate two sets of covariates and an univariate response driven by several latent factors.

Usage

SimulateCVR(family = c("gaussian", "binomial", "poisson"), n = 100,
rank = 4, p1 = 50, p2 = 70, pnz = 10, sigmax = 0.2,
sigmay = 0.5, beta = c(2, 1, 0, 0), standardization = TRUE)

Arguments

family Type of response. "gaussian" for continuous response, "binomial" for binary response, and "poisson" for Poisson response. The default is "gaussian".
n Number of rows. The default is 100.
rank Number of latent factors generating the covariates. The default is 4.
p1 Number of variables in X1. The default is 50.
p2 Number of variables in X2. The default is 70.
pnz Number of variables in X1 and X2 related to the signal. The default is 10.
sigmax Standard deviation of normal noise in X1 and X2. The default is 0.2.
sigmay Standard deviation of normal noise in Y. Only used when the response is Gaussian. The default is 0.5.
beta Numeric vector, the coefficients used to generate response from the latent factors. The default is c(2, 1, 0, 0).
standardization Logical. If TRUE, standardize X1 and X2 before output. The default is TRUE.

Details

The latent factors in U are randomly generated normal vectors,

\[X_1 = U \ast V_1 + \sigma_x \ast E_1, \quad X_2 = U \ast V_2 + \sigma_x \ast E_2, \quad E_1, E_2 \text{ are } N(0,1) \text{ noise matrices.} \]

The nonzero entries of \(V_1 \) and \(V_2 \) are generated from Uniform([-1, -0.5] U [0.5, 1]).

For Gaussian response,
\[y = U \ast \beta + \sigma_y \ast e_y, e_y \text{ is N}(0,1) \text{ noise vector}, \]

for binary response,

\[y \sim \text{rbinom}(n, 1, \frac{1}{1 + \exp(-U \ast \beta)}), \]

and for Poisson response,

\[y \sim \text{rpois}(n, \exp(U \ast \beta)). \]

See the reference for more details.

Value

- **X1, X2** The two sets of covariates with dimensions n*p1 and n*p2 respectively.
- **y** The response vector with length n.
- **U** The true latent factor matrix with dimension n*rank.
- **beta** The coefficients used to generate response from U. The length is rank.
- **V1, V2** The true loading matrices for X1 and X2 with dimensions p1*rank and p2*rank. The first pnz rows are nonzero.

Author(s)

Chongliang Luo, Kun Chen.

References

See Also

CVR, cvrsolver.

Examples

```r
set.seed(42)
mydata <- SimulateCVR(family = "g", n = 100, rank = 4, p1 = 50, p2 = 70,
                      pnz = 10, beta = c(2, 1, 0, 0))
X1 <- mydata$X1
X2 <- mydata$X2
Xlist <- list(X1 = X1, X2 = X2);
Y <- mydata$y
opts <- list(standardization = FALSE, maxIters = 300, tol = 0.005)
## use sparse CCA solution as initial values, see SparseCCA()
Wini <- SparseCCA(X1, X2, 4, 0.7, 0.7)
## perform CVR with fixed eta and lambda, see cvrsolver()
fit <- cvrsolver(Y, Xlist, rank = 4, eta = 0.5, Lam = c(1, 1),
                 family = "gaussian", Wini, penalty = "GL1", opts)
## check sparsity recovery
fit$W[[1]];
fit$W[[2]];
## check orthogonality
```
SparseCCA

Sparse canonical correlation analysis.

Description
Get sparse CCA solutions of X1 and X2. Use cca and cca.permute from PMA package. See PMA package for details.

Usage
SparseCCA(X1, X2, rank = 2, penaltyx1 = NULL, penaltyx2 = NULL, nperms = 25, ifplot = 0)

Arguments
X1, X2 Numeric matrices representing the two sets of covariates. They should have the same number of rows and cannot contain missing values.
rank The number of canonical variate pairs wanted. The default is 2.
penaltyx1, penaltyx2 Numeric vectors as the penalties to be applied to X1 and X2. The defaults are seq(0.1, 0.7, len = 20). See PMA package for details.
nperms Number of times the data should be permuted. The default is 25. Don’t use too small value. See PMA package for details.
ifplot 0 or 1. The default is 0 which means don’t plot the result. See PMA package for details.

Details
This function is generally used for tuning the penalties in sparse CCA if penaltyx1 and penaltyx2 are supplied as vectors. The CCA solution is based on PMD algorithm and the tuning is based on permutation. The fitted W1 and W2 are scaled so that the diagonals of W1'X1'X1W1 and W2'X2'X2W2 are all 1’s.

Specifically, if a single value of mild penalty is provided for both penaltyx1 and penaltyx2, the result can be used as initial values of W’s in CVR. For instance, with penaltyx1 = 0.7 and penaltyx2 = 0.7, the fitted W1 and W2 are only shrinked, but mostly not zero yet.

Value
W1 Loading matrix corresponding to X1. X1*W1 gives the canonical variates from X1.
W2 Loading matrix corresponding to X2. X2*W2 gives the canonical variates from X2.
Author(s)

Chongliang Luo, Kun Chen.

References

See Also

CVR, CCA, CCA.permute.
Index

*Topic **datasets**
 alcohol, 3
 mouse, 8
*Topic **package**
 CVR-package, 2

alcohol, 3

CCA, 13
CCA.permute, 13
CVR, 4, 8, 11, 13
CVR-package, 2
cvrsolver, 5, 6, 11

mouse, 8

plot.CVR, 9

SimulateCVR, 5, 8, 10
SparseCCA, 5, 12