Package ‘ChannelAttribution’

February 5, 2022

Type Package
Title Markov Model for Online Multi-Channel Attribution
Version 2.0.5
Date 2022-02-05
Maintainer Davide Altomare <info@channelattribution.io>

Description Advertisers use a variety of online marketing channels to reach consumers and they want to know the degree each channel contributes to their marketing success. This is called online multi-channel attribution problem. This package contains a probabilistic algorithm for the attribution problem. The model uses a k-order Markov representation to identify structural correlations in the customer journey data. The package also contains three heuristic algorithms (first-touch, last-touch and linear-touch approach) for the same problem. The algorithms are implemented in C++.

License GPL-3 | file LICENSE

URL https://channelattribution.io
LinkingTo Rcpp, RcppArmadillo
Imports Rcpp

NeedsCompilation yes

Author Davide Altomare [cre, aut],
David Loris [aut]

Repository CRAN
Date/Publication 2022-02-05 10:20:10 UTC

R topics documented:

ChannelAttribution-package .. 2
auto_markov_model ... 3
choose_order ... 4
Data ... 5
heuristic_models ... 6
markov_model ... 7
transition_matrix .. 8

Index 10
Description

Advertisers use a variety of online marketing channels to reach consumers and they want to know the degree each channel contributes to their marketing success. This is called online multi-channel attribution problem. In many cases, advertisers approach this problem through some simple heuristics methods that do not take into account any customer interactions and often tend to underestimate the importance of small channels in marketing contribution. This package provides a function that approaches the attribution problem in a probabilistic way. It uses a k-order Markov representation to identify structural correlations in the customer journey data. This would allow advertisers to give a more reliable assessment of the marketing contribution of each channel. The approach basically follows the one presented in Eva Anderl, Ingo Becker, Florian v. Wangenheim, Jan H. Schumann (2014). Differently for them, we solved the estimation process using stochastic simulations. In this way it is also possible to take into account conversion values and their variability in the computation of the channel importance. The package also contains a function that estimates three heuristic models (first-touch, last-touch and linear-touch approach) for the same problem.

Details

Package: Channel Attribution
Type: Package
Version: 2.0.5
Date: 2022-02-05
License: GPL (>= 2)

Package contains functions for channel attribution in web marketing.

Author(s)

Davide Altomare, David Loris
Maintainer Davide Altomare <info@channelattribution.io>

References

Channel Attribution Official Website: https://channelattribution.io

auto_markov_model

Automatic Markov Model.

Description

Estimate a Markov model from customer journey data after automatically choosing a suitable order. It requires paths that do not lead to conversion as input.

Usage

```r
auto_markov_model(Data, var_path, var_conv, var_null, var_value=NULL, 
max_order=10, roc_npt=100, plot=FALSE, nsim_start=1e5, 
max_step=NULL, out_more=FALSE, sep=">", 
ncore=1, nfold=10, seed=0, conv_par=0.05, rate_step_sim=1.5, 
verbose=TRUE)
```

Arguments

- **Data**
 - data.frame containing customer journeys data.
- **var_path**
 - column name containing paths.
- **var_conv**
 - column name containing total conversions.
- **var_null**
 - column name containing total paths that do not lead to conversions.
- **var_value**
 - column name containing total conversion value.
- **max_order**
 - maximum Markov Model order considered.
- **roc_npt**
 - number of points used for approximating roc and auc.
- **plot**
 - if TRUE, a plot with penalized auc with respect to order will be displayed.
- **nsim_start**
 - minimum number of simulations used in computation.
- **max_step**
 - maximum number of steps for a single simulated path. if NULL, it is the maximum number of steps found into Data.
- **out_more**
 - if TRUE, transition probabilities between channels and removal effects will be shown.
- **sep**
 - separator between the channels.
- **ncore**
 - number of threads used in computation.
- **nfold**
 - how many repetitions are used to verify if convergence is reached at each iteration.
- **seed**
 - random seed. Giving this parameter the same value over different runs guarantees that results will not vary.
- **conv_par**
 - convergence parameter for the algorithm. The estimation process ends when the percentage of variation of the results over different repetitions is less than convergence parameter.
- **rate_step_sim**
 - number of simulations used at each iteration is equal to the number of simulations used at previous iteration multiplied by rate_step_sim.
- **verbose**
 - if TRUE, additional information about process convergence will be shown.
choose_order

Value
An object of class data.frame with the estimated number of conversions and the estimated conversion value attributed to each channel.

Author(s)
Davide Altomare (<info@channelattribution.io>).

Examples

```r
## Not run:
library(ChannelAttribution)
data(PathData)
auto_markov_model(Data, "path", "total_conversions", "total_null")
## End(Not run)
```

choose_order Choose order for Markov model.

Description
Find the minimum Markov Model order that gives a good representation of customers' behaviour for data considered. It requires paths that do not lead to conversion as input. Minimum order is found maximizing a penalized area under ROC curve.

Usage

```r
choose_order(Data, var_path, var_conv, var_null, max_order=10, sep=">", ncore=1, roc_npt=100, plot=TRUE)
```

Arguments

- **Data**: data.frame containing customer journeys.
- **var_path**: column name of Data containing paths.
- **var_conv**: column name of Data containing total conversions.
- **var_null**: column name of Data containing total paths that do not lead to conversion.
- **max_order**: maximum Markov Model order considered.
Data

sep separator between channels.
ncore number of threads used in computation.
roc_npt number of points used for approximating roc and auc.
plot if TRUE, a plot with penalized auc with respect to order will be displayed.

Value

An object of class List with the estimated roc, auc and penalized auc.

Author(s)

Davide Altomare (<info@channelattribution.io>).

Examples

Not run:
library(ChannelAttribution)
data(PathData)
res=choose_order(Data, var_path="path", var_conv="total_conversions",
 var_null="total_null")
plot auc and penalized auc
plot(resaucorder,resaucauc,type="l",xlab="order",ylab="pauc",main="AUC")
lines(resaucorder,resaucpauc,col="red")
legend("right", legend=c("auc","penalized auc"),
 col=c("black","red"),lty=1)

End(Not run)
heuristic_models

Format

Data is a data.frame with 10,000 rows and 4 columns: "path" containing customer paths, "total_conversions" containing total number of conversions, "total_conversion_value" containing total conversion value and "total_null" containing total number of paths that do not lead to conversion.

Description

Estimate three heuristic models (first-touch, last-touch and linear) from customer journey data.

Usage

heuristic_models(Data, var_path, var_conv, var_value=NULL, sep=">")

Arguments

Data data.frame containing paths and conversions.
var_path column name containing paths.
var_conv column name containing total conversions.
var_value column name containing total conversion value.
sep separator between the channels.

Value

An object of class data.frame with the estimated number of conversions and the estimated conversion value attributed to each channel for each model.

Author(s)

Davide Altomare (<info@channelattribution.io>).

Examples

Not run:
library(ChannelAttribution)
data(PathData)
heuristic_models(Data,"path","total_conversions")
heuristic_models(Data,"path","total_conversions",var_value="total_conversion_value")

End(Not run)
Markov model for the online attribution problem.

Description

Estimate a k-order Markov model from customer journey data. Differently from markov_model, this function iterates estimation until convergence is reached and enables multiprocessing.

Usage

markov_model(Data, var_path, var_conv, var_value=NULL, var_null=NULL, order=1, nsim_start=1e5, max_step=NULL, out_more=FALSE, sep=">", ncore=1, nfold=10, seed=0, conv_par=0.05, rate_step_sim=1.5, verbose=TRUE)

Arguments

Data
data.frame containing customer journeys data.

var_path
column name containing paths.

var_conv
column name containing total conversions.

var_value
column name containing total conversion value.

var_null
column name containing total paths that do not lead to conversions.

order
Markov Model order.

nsim_start
minimum number of simulations used in computation.

max_step
maximum number of steps for a single simulated path. if NULL, it is the maximum number of steps found into Data.

out_more
if TRUE, transition probabilities between channels and removal effects will be returned.

sep
separator between the channels.

ncore
number of threads used in computation.

nfold
how many repetitions are used to verify if convergence has been reached at each iteration.

seed
random seed. Giving this parameter the same value over different runs guarantees that results will not vary.

conv_par
convergence parameter for the algorithm. The estimation process ends when the percentage of variation of the results over different repetitions is less than convergence parameter.

rate_step_sim
number of simulations used at each iteration is equal to the number of simulations used at previous iteration multiplied by rate_step_sim.

verbose
if TRUE, additional information about process convergence will be shown.
transition_matrix

Value

An object of class data.frame with the estimated number of conversions and the estimated conversion value attributed to each channel.

Author(s)

Davide Altomare (<info@channelattribution.io>).

Examples

```r
## Not run:
library(ChannelAttribution)
data(PathData)

#Estimate a Makov model using total conversions
markov_model(Data, var_path="path", "total_conversions")

#Estimate a Makov model using total conversions and revenues
markov_model(Data, "path", "total_conversions", var_value="total_conversion_value")

#Estimate a Makov model using total conversions, revenues and paths that do not lead to conversions
markov_model(Data, "path", "total_conversions", var_value="total_conversion_value", var_null="total_null")

#Estimate a Makov model returning transition matrix and removal effects
markov_model(Data, "path", "total_conversions", var_value="total_conversion_value", var_null="total_null", out_more=TRUE)

#Estimate a Makov model using 4 threads
markov_model(Data, "path", "total_conversions", var_value="total_conversion_value", ncore=4)

## End(Not run)
```

transition_matrix Transition matrix.

Description

Estimate a k-order transition matrix from customer journey data.

Usage

transition_matrix(Data, var_path, var_conv, var_null, order=1, sep=">", flg_equal=TRUE)
transition_matrix

Arguments

Data data.frame containing customer journeys data.
var_path column name containing paths.
var_conv column name containing total conversions.
var_null column name containing paths that do not lead to conversions.
order Markov Model order.
sep separator between the channels.
flg_equal if TRUE, transitions from a channel to itself will be considered.

Value

An object of class List containing a dataframe with channel names and a dataframe with the estimated transition matrix.

Author(s)

Davide Altomare (<info@channelattribution.io>).

Examples

Not run:
library(ChannelAttribution)
data(PathData)
transition_matrix(Data, var_path="path", var_conv="total_conversions",
 var_null="total_null", order=1, sep=">", flg_equal=TRUE)
transition_matrix(Data, var_path="path", var_conv="total_conversions",
 var_null="total_null", order=3, sep=">", flg_equal=TRUE)

End(Not run)
Index

* channel attribution
 ChannelAttribution-package, 2
* channel marketing
 ChannelAttribution-package, 2
* choose markov graph order
 choose_order, 4
* choose markov model order
 choose_order, 4
* customer journey dataset
 Data, 5
* customer journey
 ChannelAttribution-package, 2
* customer path data
 Data, 5
* dataset
 Data, 5
* first touch
 heuristic_models, 6
* last touch
 heuristic_models, 6
* linear touch
 heuristic_models, 6
* marketing attribution
 ChannelAttribution-package, 2
* markov graph
 auto_markov_model, 3
 markov_model, 7
 transition_matrix, 8
* markov model
 auto_markov_model, 3
 markov_model, 7
 transition_matrix, 8
* multi channel funnel
 ChannelAttribution-package, 2
* multi channel marketing
 ChannelAttribution-package, 2
* online attribution
 ChannelAttribution-package, 2
* web marketing