This package is currently experimental. Please use with care and report any issues you might come across.
The goal of CohortConstructor is to support the creation and manipulation of cohorts in the OMOP Common Data Model.
You can install the development version of CohortConstructor from GitHub with:
# install.packages("devtools")
::install_github("ohdsi/CohortConstructor") devtools
To illustrate how the functionality let’s create a CDM reference for the Eunomia dataset Using the CDMConnector package.
library(CDMConnector)
library(PatientProfiles)
library(dplyr)
library(CohortConstructor)
<- DBI::dbConnect(duckdb::duckdb(), dbdir = eunomia_dir())
con <- cdm_from_con(con, cdm_schema = "main",
cdm write_schema = c(prefix = "my_study_", schema = "main"))
print(cdm)
We start by making a concept based cohort. For this we only need to provide concept sets and we will get a cohort back, with cohort end date the event date associated with the records, overlapping records collapsed, and only records in observation kept.
$fractures <- cdm |>
cdmconceptCohort(conceptSet = list(
"ankle_fracture" = 4059173,
"forearm_fracture" = 4278672,
"hip_fracture" = 4230399),
name = "fractures")
We can see that our starting cohorts, before we add any additional restrictions, have the following associated settings, counts, and attrition.
settings(cdm$fractures) %>% glimpse()
#> Rows: 3
#> Columns: 2
#> $ cohort_definition_id <int> 1, 2, 3
#> $ cohort_name <chr> "ankle_fracture", "forearm_fracture", "hip_fractu…
cohort_count(cdm$fractures) %>% glimpse()
#> Rows: 3
#> Columns: 3
#> $ cohort_definition_id <int> 1, 2, 3
#> $ number_records <int> 464, 569, 138
#> $ number_subjects <int> 427, 510, 132
attrition(cdm$fractures) %>% glimpse()
#> Rows: 3
#> Columns: 7
#> $ cohort_definition_id <int> 1, 2, 3
#> $ number_records <int> 464, 569, 138
#> $ number_subjects <int> 427, 510, 132
#> $ reason_id <int> 1, 1, 1
#> $ reason <chr> "Initial qualifying events", "Initial qualifying …
#> $ excluded_records <int> 0, 0, 0
#> $ excluded_subjects <int> 0, 0, 0
Once we have created our base cohort, we can then start applying additional cohort requirements. For example, first we can require that individuals’ cohort start date fall within a certain date range.
$fractures <- cdm$fractures %>%
cdmrequireInDateRange(dateRange = as.Date(c("2000-01-01", "2020-01-01")))
Now that we’ve applied this date restriction, we can see that our cohort attributes have been updated
cohort_count(cdm$fractures) %>% glimpse()
#> Rows: 3
#> Columns: 3
#> $ cohort_definition_id <int> 1, 2, 3
#> $ number_records <int> 108, 152, 62
#> $ number_subjects <int> 104, 143, 60
attrition(cdm$fractures) %>%
filter(reason == "cohort_start_date between 2000-01-01 & 2020-01-01") %>%
glimpse()
#> Rows: 0
#> Columns: 7
#> $ cohort_definition_id <int>
#> $ number_records <int>
#> $ number_subjects <int>
#> $ reason_id <int>
#> $ reason <chr>
#> $ excluded_records <int>
#> $ excluded_subjects <int>
We can also add restrictions on patient characteristics such as age (on cohort start date by default) and sex.
$fractures <- cdm$fractures %>%
cdmrequireDemographics(ageRange = list(c(40, 65)),
sex = "Female")
Again we can see how many individuals we’ve lost after applying these criteria.
attrition(cdm$fractures) %>%
filter(reason == "Age requirement: 40 to 65") %>%
glimpse()
#> Rows: 3
#> Columns: 7
#> $ cohort_definition_id <int> 1, 2, 3
#> $ number_records <int> 43, 64, 22
#> $ number_subjects <int> 43, 62, 22
#> $ reason_id <int> 4, 4, 4
#> $ reason <chr> "Age requirement: 40 to 65", "Age requirement: 40…
#> $ excluded_records <int> 65, 88, 40
#> $ excluded_subjects <int> 61, 81, 38
attrition(cdm$fractures) %>%
filter(reason == "Sex requirement: Female") %>%
glimpse()
#> Rows: 3
#> Columns: 7
#> $ cohort_definition_id <int> 1, 2, 3
#> $ number_records <int> 19, 37, 12
#> $ number_subjects <int> 19, 36, 12
#> $ reason_id <int> 5, 5, 5
#> $ reason <chr> "Sex requirement: Female", "Sex requirement: Fema…
#> $ excluded_records <int> 24, 27, 10
#> $ excluded_subjects <int> 24, 26, 10
We can also require that individuals are in another cohort over some window. Here for example we require that study participants are in a GI bleed cohort any time prior up to their entry in the fractures cohort.
$gibleed <- cdm |>
cdmconceptCohort(conceptSet = list("gibleed" = 192671),
name = "gibleed")
$fractures <- cdm$fractures %>%
cdmrequireCohortIntersect(targetCohortTable = "gibleed",
window = c(-Inf, 0))
attrition(cdm$fractures) %>%
filter(reason == "In cohort gibleed between -Inf & 0 days relative to cohort_start_date") %>%
glimpse()
#> Rows: 3
#> Columns: 7
#> $ cohort_definition_id <int> 1, 2, 3
#> $ number_records <int> 5, 7, 2
#> $ number_subjects <int> 5, 6, 2
#> $ reason_id <int> 8, 8, 8
#> $ reason <chr> "In cohort gibleed between -Inf & 0 days relative…
#> $ excluded_records <int> 14, 30, 10
#> $ excluded_subjects <int> 14, 30, 10
Currently we have separate fracture cohorts.
Let’s say we want to create a cohort of people with any of the fractures. We could create this cohort like so:
$fractures <- cdm$fractures |>
cdm::unionCohorts()
CohortConstructor
settings(cdm$fractures)
#> # A tibble: 1 × 3
#> cohort_definition_id cohort_name gap
#> <dbl> <chr> <dbl>
#> 1 1 ankle_fracture_forearm_fracture_hip_fracture 0
cohortCount(cdm$fractures)
#> # A tibble: 1 × 3
#> cohort_definition_id number_records number_subjects
#> <int> <int> <int>
#> 1 1 14 13
cdmDisconnect(cdm)