Package ‘DA’

July 12, 2021

Version 1.2.0
Date 2021-07-11
Title Discriminant Analysis for Evolutionary Inference

Description Discriminant Analysis (DA) for evolutionary inference (Qin, X. et al, 2020, <doi:10.22541/au.159256808.83862168>), especially for population genetic structure and community structure inference. This package incorporates the commonly used linear and non-linear, local and global supervised learning approaches (discriminant analysis), including Linear Discriminant Analysis of Kernel Principal Components (LDAKPC), Local (Fisher) Linear Discriminant Analysis (LFDA), Local (Fisher) Discriminant Analysis of Kernel Principal Components (LFDACKPC) and Kernel Local (Fisher) Discriminant Analysis (KLFD). These discriminant analyses can be used to do ecological and evolutionary inference, including demography inference, species identification, and population/community structure inference.

biocViews BiomedicalInformatics, ChIPSeq, Clustering, Coverage, DNAmethylation, DifferentialExpression, DifferentialMethylation, Software, DifferentialSplicing, Epigenetics, FunctionalGenomics, GeneExpression, GeneSetEnrichment, Genetics, ImmunoOncology, MultipleComparison, Normalization, Pathways, QualityControl, RNASeq, Regression, SAGE, Sequencing, Software, SystemsBiology, TimeCourse, Transcription, Transcriptomics

Depends R (>= 3.5)
License GPL-3
SystemRequirements GNU make

BugReports https://github.com/xinghuq/DA/issues
Imports adegenet,lfda,MASS,kernlab,klaR,plotly,rARPACK,grDevices,stats,utils

VignetteBuilder knitr

NeedsCompilation no
RoxygenNote 6.1.1
Suggests knitr,testthat,rmarkdown
KLFDA

Author Xinghu Qin [aut, cre, cph] (https://orcid.org/0000-0003-2351-3610)

Maintainer Xinghu Qin <qinxinghu@gmail.com>

Repository CRAN

Date/Publication 2021-07-12 08:40:02 UTC

R topics documented:

- KLFDA 2
- KLFDAM 5
- KLFDA_mk 6
- kmatrixGauss 8
- LDAKPC 8
- LFDA 10
- LFDAKPC 12
- Mabayes 13
- predict 14

Index 16

Description

Kernel Local Fisher Discriminant Analysis (KLFDA). This function implements the Kernel Local Fisher Discriminant Analysis with an unified Kernel function. Different from KLFDA function, which adopts the Multinomial Kernel as an example, this function employs the kernel function that allows you to choose various types of kernels. See the kernel function from "kernelMatrix" (kernlab).

Usage

```
KLFDA(x, y, kernel = kernlab::polydot(degree = 1, scale = 1, offset = 1),
      r = 20, tol, prior, CV = FALSE, usekernel = TRUE,
      fL = 0.5, metric = c("weighted", "orthonormalized", "plain"),
      knn = 6, reg = 0.001, ...)
```

Arguments

- **x** The input training data
- **y** The training labels
- **kernel** The kernel function used to calculate kernel matrix. Choose the corresponding kernel you want, see details.
- **r** The number of reduced features you want to keep.
tol The tolerance used to reject the uni-variance. This is important when the variance between classes is small, and setting the large tolerance will avoid the data distortion.

prior The weight of each class, or the proportion of each class.

CV Whether to do cross validation.

usekernel whether to use kernel classifier, if TRUE, pass to Naive Bayes classifier.

fL If usekernel is TRUE, pass to the kernel function.

metric type of metric in the embedding space (default: 'weighted') 'weighted' - weighted eigenvectors 'orthonormalized' - orthonormalized 'plain' - raw eigenvectors

knn The number of nearest neighbours

reg The regularization parameter

... additional arguments for the classifier

Details

This function employs three different classifiers, the basic linear classifier, the Mabayes (Bayes rule and the Mahalanobis distance), and Naive Bayes classifier. The argument "kernel" in the klfda function is the kernel function used to calculate the kernel matrix. If usekernel is TRUE, the corresponding kernel parameters will pass to the Naive Bayes kernel classifier. The kernel parameter can be set to any function, of class kernel, which computes the inner product in feature space between two vector arguments. kernlab provides the most popular kernel functions which can be initialized by using the following functions:

rbfdot Radial Basis kernel function
polydot Polynomial kernel function
vanilladot Linear kernel function
tanhdot Hyperbolic tangent kernel function
laplacedot Laplacian kernel function
besseldot Bessel kernel function
anovadot ANOVA RBF kernel function
splinedot the Spline kernel
(see example.)

kernelFast is mainly used in situations where columns of the kernel matrix are computed per invocation. In these cases, evaluating the norm of each row-entry over and over again would cause significant computational overhead.

Value

The results give the classified classes and the posterior possibility of each class using different classifier.

class The class labels from linear classifier
posterior The posterior possibility of each class from linear classifier
Discrimination results using the Naive Bayes classifier

The reduced features

Author(s)

qinxinghu@gmail.com

References

Original Matlab Implementation: http://www.ms.k.u-tokyo.ac.jp/software.html#LFDA

See Also

predict.KLFDA, KLFDAM

Examples

```R
require(kernlab)
btest=KLFDA(as.matrix(iris[,1:4]),as.matrix(as.data.frame(iris[,5])),
kernel=kernlab::rbfdot(sigma = 0.1),
r=3,prior=NULL,tol=1e-90,
reg=0.01,metric = 'plain')
pred=predict.KLFDA(btest,testData=as.matrix(iris[1:10,1:4]),prior=NULL)
```
KLFDAM

Kernel local Fisher discriminant analysis

Description

This function performs Kernel Local Fisher Discriminant Analysis. The function provided here allows users to carry out the KLFDA using a pairwise matrix. We used the gaussian matrix as example. Users can compute different kernel matrix or distance matrix as the input for this function.

Usage

KLFDAM(kdata, y, r,
metric = c("weighted", "orthonormalized", "plain"),
tol=1e-5,knn = 6, reg = 0.001)

Arguments

kdata The input dataset (kernel matrix). The input data can be a genotype matrix, dataframe, species occurrence matrix, or principal components. The dataset have to convert to a kernel matrix before feed into this function.
y The group lables
r Number of reduced features
metric Type of metric in the embedding space (default: ‘weighted’) ‘weighted’ - weighted eigenvectors ‘orthonormalized’ - orthonormalized ‘plain’ - raw eigenvectors
knn The number of nearest neighbours
tol Tolerance to avoid singular values
reg The regularization parameter

Details

Kernel Local Fisher Discriminant Analysis for any kernel matrix. It was proposed in Sugiyama, M (2006, 2007) as a non-linear improvement for discriminant analysis. This function is adopted from Tang et al. 2019.

Value

Z The reduced features
Tr The transformation matrix

References

See Also
KLFDA

Examples

```r
kmat <- kmatrixGauss(iris[, -5], sigma=1)
zklfda=KLFDAM(kmat, iris[, 5], r=3, metric = "plain", tol=1e-5)
print(zklfda$Z)
```

KLFDA_mk

Kernel Local Fisher Discriminant Analysis (KLFDA) with Multinomial kernel

Description

Kernel Local Fisher Discriminant Analysis (KLFDA). This function implements the Kernel Local Fisher Discriminant Analysis with a Multinomial kernel.

Usage

```r
KLFDA_mk(X, Y, r, order, regParam,
usekernel = TRUE, fL = 0.5,
priors, tol, reg, metric,
plotFigures = FALSE, verbose, ...)
```

Arguments

- `X` The input training data
- `Y` The training labels
- `r` The number of reduced features
- `order` The order passing to Multinomial Kernel
- `regParam` The regularization parameter for kernel matrix
- `usekernel` Whether to used kernel classifier
- `fL` pass to kernel classifier if usekernel is TRUE
- `priors` The weight of each class
- `tol` The tolerance for rejecting uni-variance
- `reg` The regularization parameter
- `metric` Type of metric in the embedding space (default: 'weighted') 'weighted' - weighted eigenvectors 'orthonormalized' - orthonormalized 'plain' - raw eigenvectors
- `plotFigures` whether to plot the reduced features, 3D plot
- `verbose` silence the processing
- `...` additional arguments for the classifier
Details

This function uses Multinomial Kernel, users can replace the Multinomial Kernel based on your own purpose. The final discrimination employs three classifiers, the basic linear classifier, the Mabayes (Bayes rule and the Mahalanobis distance), and Naive Bayes classifier.

Value

- **class**: The class labels from linear classifier
- **posterior**: The posterior possibility of each class from linear classifier
- **bayes_judgement**: Discrimination results using the Mabayes classifier
- **bayes_assignment**: Discrimination results using the Naive Bayes classifier
- **Z**: The reduced features

Author(s)

qinxinghu@gmail.com

References

Original Matlab Implementation: http://www.ms.k.u-tokyo.ac.jp/software.html#LFDA

See Also

- predict.KLFDA_mk, klfda_1

Examples

btest=KLFDA_mk(X=as.matrix(iris[,1:4]), Y=as.matrix(as.data.frame(iris[,5])), r=3, order=2, regParam=0.25, usekernel=TRUE, fL=0.5, priors=NULL, tol=1e-90, reg=0.01, metric = 'plain', plotFigures=FALSE,
kmatrixGauss

Estimating Gaussian Kernel matrix

Description

This function estimates Gaussian kernel computation for klfda, which maps the original data space to non-linear and higher dimensions. See the details of kmatrixGauss from lfda.

Usage

```r
kmatrixGauss(x, sigma = 1)
```

Arguments

- `x`: Input data matrix or dataframe
- `sigma`: The Gaussian kernel parameter

Details

Return a n*n matrix

Value

Return a n*n matrix

References

LDAKPC

Linear Fisher discriminant analysis of kernel principal components (DAKPC)

Description

Linear Fisher discriminant analysis of kernel principal components (DAKPC). This function employs the LDA and kpca. This function is called Kernel Fisher Discriminant Analysis (KFDA) in other package (kfda). "KFDA" is the misleading name and "KFDA" has crucial error in package kfda. This function rectifies the current existing error for kfda.
Usage

LDAKPC(x, y, n.pc, usekernel = FALSE,
fl = 0, kernel.name = "rbfdot",
kpar = list(0.001), kernel = "gaussian",
threshold = 1e-05, ...)

Arguments

x Input training data
y Input labels
n.pc number of pcs that will be kept in analysis
usekernel Whether to use kernel function, if TRUE, it will pass to the kernel.names
fl if using kernel, pass to kernel function
kernel.name if usekernel is TRUE, this will take the kernel name and use the parameters set
kpar the list of hyper-parameters (kernel parameters). This is a list which contains

sigma inverse kernel width for the Radial Basis kernel function "rbfdot" and the
degree, scale, offset for the Polynomial kernel "polydot"
scale, offset for the Hyperbolic tangent kernel function "tanhdot"
sigma, order, degree for the Bessel kernel "besseldot".
sigma, degree for the ANOVA kernel "anovadot".
Hyper-parameters for user defined kernels can be passed through the kpar parameter as well.
kernel kernel name if all the above are not used
threshold the threshold for kpc: value of the eigenvalue under which principal components
are ignored (only valid when features = 0). (default: 0.0001)
... additional arguments for the classifier

Value

k pca Results of kernel principal component analysis. Kernel Principal Components
Analysis is a nonlinear form of principal component analysis
kpc Kernel principal components. The scores of the components
LDAKPC Linear discriminant analysis of kernel principal components
LDs The discriminant function. The scores of the components
label The corresponding class of the data
n.pc Number of Pcs kept in analysis

Author(s)

qinxinghu@gmail.com
References

Examples

data(iris)
train=LDAKPC(iris[,1:4],y=iris[,5],n.pc=3,kernel.name = "rbfdot")
pred=predict.LDAKPC(train,testData = iris[1:10,1:4])

LFDA

Local Fisher Discriminant Analysis (LFDA)

Description

This function implements local Fisher discriminant analysis. It gives the discriminant function with the posterior possibility of each class.

Usage

LFDA(x, y, r, prior = proportions, CV = FALSE, usekernel = TRUE, fL = 0, tol, kernel = "gaussian", metric = c("orthonormalized", "plain", "weighted"), knn = 5, ...)

Arguments

x Input training data
y Training labels
r Number of reduced features that will be kept
prior Prior possibility of each class
CV Whether to do cross validation
usekernel Whether to use the kernel discrimination in native bayes classifier
fL Feed to native bayes classifier. Factor for Laplace correction, default factor is 0, i.e. no correction.
tol The tolerance used in Mabayes discrimination, see Mabayes
kernel If usekernel is TRUE, specifying the kernel names, see NaiveBaye.
metric The type of metric in the embedding space (no default), e.g., 'weighted', weighted eigenvectors; 'orthonormalized', orthonormalized; 'plain', raw eigenvectors.
knn Number of nearest neighbors
... additional arguments for the classifier
Details
The results give the classified classes and the posterior possibility of each class using different classifier.

Value

<table>
<thead>
<tr>
<th>class</th>
<th>The class labels</th>
</tr>
</thead>
<tbody>
<tr>
<td>posterior</td>
<td>The posterior possibility of each class</td>
</tr>
<tr>
<td>bayes_judgement</td>
<td>Discrimintion results using the Mabayes classifier</td>
</tr>
<tr>
<td>bayes_assigment</td>
<td>Discrimintion results using the Naive bayes classifier</td>
</tr>
<tr>
<td>Z</td>
<td>The reduced features</td>
</tr>
</tbody>
</table>

Author(s)
qinxinghu@gmail.com

References

Examples

```R
LFDAtest=LFDA(iris[,1:4],y=iris[,5],r=3,
CV=FALSE,usekernel = TRUE, fl = 0,
kernel="gaussian",metric = "plain",knn = 6,tol = 1)
LFDApred=predict.LFDA(LFDAtest,iris[1:10,1:4],prior=NULL)
```
Description

Local Fisher Discriminant Analysis of Kernel principle components

Usage

LFDAKPC(x, y, n.pc, usekernel = FALSE, fL = 0, kernel.name = "rbfdot", kpar = list(0.001), kernel = "gaussian", threshold = 1e-05, ...)

Arguments

x Input training data
y Input labels
n.pc number of pcs that will be kept in analysis
usekernel Whether to use kernel function, if TRUE, it will pass to the kernel.names
fL if using kernel, pass to kernel function
kernel.name if usekernel is TRUE, this will take the kernel name and use the parameters set as you defined
kpar the list of hyper-parameters (kernel parameters). This is a list which contains the parameters to be used with the kernel function. Valid parameters for existing kernels are:
sigma inverse kernel width for the Radial Basis kernel function "rbfdot" and the Laplacian kernel "laplacedot".
degree, scale, offset for the Polynomial kernel "polydot"
scale, offset for the Hyperbolic tangent kernel function "tanhdot"
sigma, order, degree for the Bessel kernel "besseldot".
sigma, degree for the ANOVA kernel "anovadot". Hyper-parameters for user defined kernels can be passed through the kpar parameter as well.
kernel kernel name if all the above are not used
threshold the threshold for kpc: value of the eigenvalue under which principal components are ignored (only valid when features = 0). (default : 0.0001)
... additional arguments for the classifier
Value

-k pca Results of kernel principal component analysis. Kernel Principal Components Analysis is a nonlinear form of principal component analysis
-k pc Kernel principal components. The scores of the components
-LFDAKPC The scores of the components
-LDs The discriminant function. The scores of the components
-label The corresponding class of the data
-n.pc Number of Pcs kept in analysis

Author(s)

qinxinghu@gmail.com

References

Examples

train=LFDAKPC(iris[,1:4],y=iris[,5],tol=1,n.pc=3,kernel.name = "rbfdot")
pred=predict.LFDAKPC(train,prior=NULL,testData = iris[1:10,1:4])

Mabayes

Membership assignment by weighted Mahalanobis distance and Bayes rule

Description

The function gives the discrimination of the potential classes based on Bayes rule and the Mahalanobis distance. This function adopts the function from Bingpei Wu, 2012, WMDB 1.0 with some corrections of the judgment rule.

Usage

Mabayes(TrnX, TrnG, p = rep(1, length(levels(TrnG))), TstX = NULL, var.equal = FALSE, tol)
Arguments

TrnX Training data
TrnG Training label
p prior or proportion of each class
TstX Test data
var.equal whether the variance or the weight is equal between classes
tol The threshold or tolerance value for the covariance and distance

Value

posterior and class
The posterior possibility and class labels

Author(s)

qinxinghu@gmail.com

References

Bingpei Wu, 2012, WMDB 1.0: Discriminant Analysis Methods by Weight Mahalanobis Distance and bayes.

Examples

data(iris)
train=Mabayes(iris[,1:4],iris[,5],TstX= iris[1:10,1:4],tol = 1)

predict

Predict method in DA for discriminant analysis

Description

Predict method for DA.
predict

Usage

```r
## S3 method for class 'KLFDA_mk'
predict(object,prior,testData, ...)
## S3 method for class 'KLFDA'
predict(object,prior,testData, ...)
## S3 method for class 'LDAKPC'
predict(object,prior,testData, ...)
## S3 method for class 'LFDA'
predict(object,prior,testData, ...)
## S3 method for class 'LFDAKPC'
predict(object,prior,testData, ...)
```

Arguments

- `object`: One of the trained object from discriminant analysis
- `prior`: The weights of the groups.
- `testData`: The test data or new data
- `...`: Arguments passed to the classifiers

Value

The predict function will output the predicted points and their predicted possibility
Index

∗ KLFDA_mk
 KLFDA_mk, 6
∗ KLFDA
 KLFDA, 2
∗ LDAKPC
 LDAKPC, 8
∗ LFDAKPC
 LFDAKPC, 12
∗ LFDA
 LFDA, 10
∗ predict
 predict, 14

KLFDA, 2
KLFDA_mk, 6
KLFDAM, 5
kmatrixGauss, 8

LDAKPC, 8
LFDA, 10
LFDAKPC, 12

Mabayes, 13

predict, 14