Package ‘DAMOCLES’

August 12, 2020

Type Package
Title Dynamic Assembly Model of Colonization, Local Extinction and Speciation
Version 2.3
Date 2020-08-12
Depends R (>= 3.0)
Imports caper, ape, deSolve, matrixStats, expm, picante, Matrix, DDD
 (>= 3.4), stats, methods, Hmisc
Suggests testthat (>= 2.1.0)
Author Rampal S. Etienne & Alex L. Pigot
Maintainer Rampal S. Etienne <r.s.etienne@rug.nl>
License GPL-2
Description Simulates and computes (maximum) likelihood of a dynamical model of community assembly that takes into account phylogenetic history.
Encoding UTF-8
RoxygenNote 7.1.1
NeedsCompilation no
Repository CRAN
Date/Publication 2020-08-12 14:22:11 UTC

R topics documented:

 DAMOCLES_bootstrap ... 2
 DAMOCLES_loglik ... 5
 DAMOCLES_ML .. 7
 DAMOCLES_sim .. 9
 NWPrimates_data .. 11

Index 13
DAMOCLES_bootstrap

Phylogenetic community structure hypothesis test

Description

This function computes the maximum likelihood estimates of colonisation and local extinction rate for a given phylogeny and presence-absence data under the DAMOCLES model. These rate estimates are used to simulate null communities under the DAMOCLES model. Standardized effect size of mean nearest taxon distance (mntd), mean phylogenetic distance (mpd) and loglikelihood are calculated. For comparison, standardized effect sizes are also calculated relative to a "Random-Draw" null model i.e. presence absence randomised across tips.

Usage

DAMOCLES_bootstrap(
 phy = ape::rcoal(10),
 pa = matrix(c(phy$tip.label, sample(c(0, 1), ape::Ntip(phy), replace = T)), nrow = ape::Ntip(phy), ncol = 2),
 initparsopt = c(0.1, 0.1),
 idparsopt = 1:length(initparsopt),
 parsfix = NULL,
 idparsfix = NULL,
 pars2 = c(0.001, 1e-04, 1e-05, 1000),
 pchoice = 0,
 runs = 999,
 estimate_pars = FALSE,
 conf.int = 0.95
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>phy</td>
<td>phylogeny in phylo format</td>
</tr>
<tr>
<td>pa</td>
<td>presence-absence table.</td>
</tr>
<tr>
<td></td>
<td>The first column contains the labels of the species (corresponding to the tip labels in the phylogeny).</td>
</tr>
<tr>
<td></td>
<td>The second column contains the presence (1) or absence (0) of species in the local community.</td>
</tr>
<tr>
<td>initparsopt</td>
<td>The initial values of the parameters that must be optimized</td>
</tr>
<tr>
<td>idparsopt</td>
<td>The ids of the parameters that must be optimized, e.g. 1:2 for extinction rate, and offset of immigration rate. The ids are defined as follows:</td>
</tr>
<tr>
<td></td>
<td>id == 1 corresponds to mu (extinction rate)</td>
</tr>
<tr>
<td></td>
<td>id == 2 corresponds to gamma_0 (offset of immigration rate)</td>
</tr>
<tr>
<td>parsfix</td>
<td>The values of the parameters that should not be optimized. See idparsfix.</td>
</tr>
</tbody>
</table>
idparsfix: The ids of the parameters that should not be optimized, e.g. c(1) if mu should not be optimized, but only gamma_0. In that case idparsopt must be c(2). The default is to fix the parameters not specified in idparsopt.

pars2: Vector of settings:
pars2[1] sets the relative tolerance in the parameters
pars2[2] sets the relative tolerance in the function
pars2[3] sets the absolute tolerance in the parameters
pars2[4] sets the maximum number of iterations

pchoice: sets which p-value to optimize and with which root state to simulate (default
pchoice = 0)
pchoice == 0 correspond to optimizing sum of p_0f + p_1f, and simulating with an equal number of root states being 0 or 1
pchoice == 1 correspond to optimizing p_0f, and simulating with root state being 0
pchoice == 2 correspond to optimizing p_1f, and simulating with root state being 1

runs: the number null communities to generate.

estimate_pars: Whether to estimate parameters on the simulated datasets (default = FALSE).

conf.int: The width of the confidence intervals calculated on bootstrapped parameter estimates

Details
The output is a list of two dataframes. The first dataframe, summary_table, contains the summary results. The second dataframe, null_community_data, contains descriptive statistics for each null community.

Value
summary_table: mu gives the maximum likelihood estimate of mu and confidence intervals in brackets if estimate_pars = TRUE gamma_0 gives the maximum likelihood estimate of gamma_0 and confidence intervals in brackets if bootstrap=TRUE loglik gives the maximum loglikelihood of gives the number of estimated parameters, i.e. degrees of freedom conv gives a message on convergence of optimization; conv = 0 means convergence n.obs gives the number of species locally present in the observed community mntd.obs gives the MNTD of the observed community mpd.obs gives the MPD of the observed community runs gives the number of null communities simulated mntd.mean.RD mean of MNTD from null communities generated by a "Random Draw" model mntd.sd.RD standard deviation of MNTD from null communities generated by a "Random Draw" model mntd.obs.z.RD standardized effect size of MNTD compared to null communities generated by a "Random Draw" model (= -1*(mntd.obs - mntd.mean.RD)/ mntd.sd.RD) mntd.obs.rank.RD rank of observed MNTD compared to null communities generated by a "Random Draw" model mntd.obs.q.RD
DAMOCLES_bootstrap

- **quantile of observed MNTD vs. null communities** ($= \text{mntd.obs.rank.RD} / \text{runs} + 1$)
- **mpd.mean.RD** mean of MPD from null communities generated by a "Random Draw" model
- **mpd.sd.RD** standard deviation of MPD from null communities generated by a "Random Draw" model
- **mpd.obs.z.RD** standardized effect size of MPD compared to null communities generated by a "Random Draw" model ($= -1 * (\text{mpd.obs} - \text{mpd.mean.RD}) / \text{mpd.sd.RD}$)
- **mntd.RD** gives the MNTD of the null community generated by a "Random Draw" model
- **mntd.obs.rank.RD** rank of observed MNTD compared to null communities generated by a "Random Draw" model
- **mntd.obs.q.RD** quantile of observed MNTD vs. null communities ($= \text{mntd.obs.rank.RD} / \text{runs} + 1$)
- **n.DAMOCLES** gives the number of species locally present in the null community generated by DAMOCLES
- **mntd.mean.DAMOCLES** gives the MNTD from null communities generated by DAMOCLES
- **mntd.sd.DAMOCLES** standard deviation of MNTD from null communities generated by DAMOCLES
- **mntd.obs.z.DAMOCLES** standardized effect size of MNTD compared to null communities generated by DAMOCLES ($= -1 * (\text{mntd.obs} - \text{mntd.mean.DAMOCLES}) / \text{mntd.sd.DAMOCLES}$)
- **mntd.obs.rank.DAMOCLES** rank of observed MNTD compared to null communities generated by DAMOCLES
- **mntd.obs.q.DAMOCLES** quantile of observed MNTD vs. null communities ($= \text{mntd.obs.rank.DAMOCLES} / \text{runs} + 1$)
- **mpd.DAMOCLES** gives the MPD of the null community generated by DAMOCLES
- **mpd.obs.rank.DAMOCLES** rank of observed MPD compared to null communities generated by DAMOCLES
- **mpd.obs.q.DAMOCLES** quantile of observed MPD vs. null communities ($= \text{mpd.obs.rank.DAMOCLES} / \text{runs} + 1$)
- **loglik.mean.DAMOCLES** gives the maximum loglikelihood for the null community generated by DAMOCLES
- **loglik.sd.DAMOCLES** gives the standard deviation of loglikelihoods from null communities generated by DAMOCLES
- **loglik.obs.z.DAMOCLES** standardized effect size of loglikelihood compared to null communities generated by DAMOCLES
- **loglik.obs.rank.DAMOCLES** rank of observed loglikelihood compared to null communities generated by DAMOCLES
- **loglik.obs.q.DAMOCLES** quantile of observed loglikelihoods vs. null communities ($= \text{loglik.obs.rank.DAMOCLES} / \text{runs} + 1$)

null_community_data

- **run** gives the simulation run
- **root.state.print** gives the state of the ancestral species in the local community assumed in the simulation, i.e. present (1) or absent (0)
- **n** gives the number of species locally present in the observed community
- **n.RD** gives the number of species locally present in the null community generated by a "Random Draw" model
- **mntd.RD** gives the MNTD of the null community generated by a "Random Draw" model
- **mpd.RD** gives the MPD of the null community generated by a "Random Draw" model
- **n.DAMOCLES** gives the number of species locally present in the null community generated by DAMOCLES
- **mntd.DAMOCLES** gives the MNTD of the null community generated by DAMOCLES
- **mpd.DAMOCLES** gives the MPD of the null community generated by DAMOCLES
- **loglik.DAMOCLES** gives the maximum loglikelihood for the null community generated by DAMOCLES
- **mu.DAMOCLES** gives the maximum likelihood estimate of mu for the null community generated by DAMOCLES
- **gamma_0.DAMOCLES** gives the maximum likelihood estimate of gamma_0 for
the null community generated by DAMOCLES

Author(s)
Rampal S. Etienne

References

See Also
DAMOCLES_ML DAMOCLES_sim

DAMOCLES_loglik

Description
Computes likelihood for the presence-absence data of species in a local community for a given phylogeny of species in the region.

Usage
DAMOCLES_loglik(
 phy,
 pa,
 pars,
 pchoice = 0,
 edgeTList = NULL,
 methode = "analytical",
 model = 0,
 Mlist = NULL,
 verbose = FALSE
)

Arguments

phy
phylogeny in phylo format

pa
presence-absence table with the first column the species labels and the second column the presence (1) or absence (0) of the species

pars
Vector of model parameters:
pars[1] corresponds to mu (extinction rate in local community)
pars[2] corresponds to gamma_0 in formula gamma(t) = gamma_0/(1 + gamma_1 * t) where gamma(t) is immigration rate into local community)
pars[3] corresponds to gamma_1 in formula gamma(t) = gamma_0/(1 + gamma_1 * t) where gamma(t) is immigration rate into local community)
pchoice sets the p-value to optimize:
pchoice == 0 corresponds to the sum of p_0f + p_1f
pchoice == 1 corresponds to p_0f
pchoice == 2 corresponds to p_1f

dgeTList list of edge lengths that need to be successively pruned; if not specified, it will be computed using compute_edgeTList

methode method used to solve the ODE. Either 'analytical' for the analytical solution, 'Matrix' for matrix exponentiation using package Matrix or 'expm' using package 'expm' or any of the numerical solvers, used in deSolve.

model model used. Default is 0 (standard null model). Other options are 1 (binary traits) 2 (trinary environmental trait) or 3 (diversity-dependent colonization - beta version)

Mlist list of M matrices that can be specified when methode = 'analytical'. If set at NULL (default) and methode = 'analytical’, Mlist will be computed.

verbose Whether intermediate output should be printed. Default is FALSE.

Value
The loglikelihood

Author(s)
Rampal S. Etienne

References

See Also
DAMOCLES_ML DAMOCLES_sim

Examples

#TEST IT WORKS
library(ape)
phy = ape::rcoal(100)
pars = c(0.5,0.1,0.1)
pa = rbinom(100,c(0,1),0.5)
pa = matrix(c(phy$tip.label,pa),nrow = length(phy$tip.label),ncol = 2)

- without a root edge
loglik = DAMOCLES_loglik(phy,pa,pars)
loglik

- with a root edge
DAMOCLES_ML

Maximization of the loglikelihood under the DAMOCLES model

Description

This function computes the maximum likelihood estimates of the parameters of the DAMOCLES model for a given phylogeny and presence-absence data. It also outputs the corresponding loglikelihood that can be used in model comparisons.

Usage

DAMOCLES_ML(
 phy,
 pa,
 initparsopt,
 idparsopt = 1:length(initparsopt),
 parsfix = NULL,
 idparsfix = NULL,
 idparsequal = NULL,
 pars2 = c(0.001, 1e-04, 1e-05, 1000),
 optimmethod = "subplex",
 pchoice = 0,
 edgeTList = NULL,
 methode = "analytical",
 model = 0,
 verbose = FALSE
)

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>phy</td>
<td>phylogeny in phylo format</td>
</tr>
<tr>
<td>pa</td>
<td>presence-absence table. The first column contains the labels of the species</td>
</tr>
<tr>
<td></td>
<td>(corresponding to the tip labels in the phylogeny). The second column</td>
</tr>
<tr>
<td></td>
<td>contains the presence (1) or absence (0) of species in the local community.</td>
</tr>
<tr>
<td>initparsopt</td>
<td>The initial values of the parameters that must be optimized</td>
</tr>
<tr>
<td>idparsopt</td>
<td>The ids of the parameters that must be optimized, e.g. 1:2 for extinction</td>
</tr>
<tr>
<td></td>
<td>rate, and offset of immigration rate. The ids are defined as follows:</td>
</tr>
<tr>
<td></td>
<td>id == 1 corresponds to mu (extinction rate)</td>
</tr>
<tr>
<td></td>
<td>id == 2 corresponds to gamma_0 (offset of immigration rate)</td>
</tr>
<tr>
<td></td>
<td>id == 3 corresponds to gamma_1 (parameter controlling decline in immigration</td>
</tr>
<tr>
<td></td>
<td>rate with time)</td>
</tr>
<tr>
<td>parsfix</td>
<td></td>
</tr>
<tr>
<td>idparsfix</td>
<td></td>
</tr>
<tr>
<td>idparsequal</td>
<td></td>
</tr>
<tr>
<td>pars2</td>
<td></td>
</tr>
</tbody>
</table>
parsfix The values of the parameters that should not be optimized. See idparsfix.

idparsfix The ids of the parameters that should not be optimized, e.g. c(1,3) if mu and gamma_1 should not be optimized, but only gamma_0. In that case idparsopt must be c(2). The default is to fix all parameters not specified in idparsopt.

idparsequal The ids of the parameters that should be set equal to the first parameter of the same type.

pars2 Vector of settings:
 pars2[1] sets the relative tolerance in the parameters
 pars2[2] sets the relative tolerance in the function
 pars2[3] sets the absolute tolerance in the parameters
 pars2[4] sets the maximum number of iterations

optimmethod Method used in optimization of the likelihood. Current default is 'subplex'. Alternative is 'simplex' (default of previous version)

pchoice sets the p-value to optimize:
 pchoice == 0 corresponds to the sum of p_0f + p_1f
 pchoice == 1 corresponds to p_0f
 pchoice == 2 corresponds to p_1f

edgeTList list of edge lengths that need to be successively pruned; if not specified, it will computed using compute_edgeTList

methode method used to solve the ODE. Either 'analytical' for the analytical solution, 'Matrix' for matrix exponentiation using package Matrix or 'expm' using package 'expm' or any of the numerical solvers, used in deSolve.

model model used. Default is 0 (standard null model). Other options are 1 (binary traits) 2 (trinary environmental trait) or 3 (diversity-dependent colonization - beta version)

verbose Whether intermediate output should be printed. Default is FALSE.

Details

The output is a dataframe containing estimated parameters and maximum loglikelihood.

Value

mu gives the maximum likelihood estimate of mu

gamma_0 gives the maximum likelihood estimate of gamma_0

gamma_1 gives the maximum likelihood estimate of gamma_1

loglik gives the maximum loglikelihood

df gives the number of estimated parameters, i.e. degrees of freedom

conv gives a message on convergence of optimization; conv = 0 means convergence
Author(s)
Rampal S. Etienne

References

See Also
DAMOCLES_loglik DAMOCLES_sim

DAMOCLES_sim

Simulating DAMOCLES

Description
Simulates DAMOCLES

Usage

```r
DAMOCLES_sim(  
  phy,  
  gamma_0,  
  gamma_td,  
  mu,  
  sigma,  
  psiBranch,  
  psiTrait,  
  z,  
  phi,  
  traitOpt,  
  br0,  
  br_td,  
  nTdim,  
  root.state,  
  root.trait.state,  
  plotit = FALSE,  
  keepExtinct = FALSE  
)
```

Arguments

- **phy**
 phylogeny in phylo format
- **gamma_0**
 initial per lineage rate of immigration (gamma)
- **gamma_td**
 time dependency in gamma
DAMOCLES_sim

mu per lineage rate of local extinction
sigma probability of local (i.e. in-situ) speciation
psiBranch phylogenetic distance at which gamma is half gamma_0
psiTrait trait distance at which gamma is half gamma_0
z shape of increase in gamma with increasing trait or phylogenetic distance
phi rate of decline in gamma with distance from trait optima
traitOpt trait value at which gamma = gamma_0
br0 Brownian rate parameter
br_td rate of temporal decline in Brownian rate parameter
nTdim number of independent trait dimensions
root.state geographic state of ancestor i.e. present (1) or absent(0)
root.trait.state trait value of ancestor
plotit whether to plot the phylogeny and timing of immigration/local extinction events
keepExtinct whether to retain data for extinct lineages

Value

A list of two tables. The first table contains the following columns: The first column contains the vector of tip labels in the phylogeny The last column contains the presence (1) or absence (0) of the species The second table has dimensions d x N where d is the number of trait dimensions and N is the number of species. It contains the trait values.

Author(s)

Alex L. Pigot

References

See Also

DAMOCLES_ML DAMOCLES_loglik

Examples

#create random phylogeny
library(ape)
phy = ape::rcoal(10)

#run DAMOCLES
out = DAMOCLES_sim(
 phy,
)
NWPrimates_data

gamma_0 = 1.5,
gamma_td = 0,
mu = 0,
sigma = 0,
psiBranch = 0,
psiTrait = 0,
z = 10,
phi = 0,
traitOpt = 1,
br0 = 0.1,
br_td = -0.1,
nTdim = 2,
root.state = 1,
root.trait.state = 0,
plotit = FALSE,
keepExtinct = FALSE

the output consists of a list
patable = out[[1]] # the first element is the presence absence table
traits = out[[2]] # this is a matrix of traits values

show presence/absence on the tree
patable$col = rep("black",dim(patable)[1])
patable$col[which(patable$state == 1)] = "red"
plot(phy,tip.col = patable$col)

NWPrimates_data

Dated phylogenetic tree of the New World Primates in nexus format
and presence-absence matrix for species in Manu

Description

A list with two elements.
- phy is a dated molecular phylogeny for 94 species of New World Primates extracted from the maximum likelihood tree (AUTOsoft dated) of Springer et al. (2012). 1 time unit = 100 million years.
- pa is the presence-absence matrix of NW Primates in Manu from Solari et al. (2006). The first column indicate the species tip labels and the second column indicates presence (1) and absence (0).

Format

A list with two elements. The first element (phy) is the primate phylogeny in nexus format. The second element (pa) is the presence-absence matrix with 94 rows and 2 columns.
Source

See Also

DAMOCLES_sim, DAMOCLES_ML, DAMOCLES_loglik
Index

* datasets
 NWPrimates_data, 11

* models
 DAMOCLES_bootstrap, 2
 DAMOCLES_loglik, 5
 DAMOCLES_ML, 7
 DAMOCLES_sim, 9

DAMOCLES_bootstrap, 2
DAMOCLES_loglik, 5, 9, 10, 12
DAMOCLES_ML, 5, 6, 7, 10, 12
DAMOCLES_sim, 5, 6, 9, 9, 12

NWPrimates_data, 11