R topics documented:

- as_lineage_tree ... 4
- as_lineage_tree.phyDat.phylo,lineage_tree_config-method 4
- as_phylo .. 5
- as_phylo.igraph-method 5
- DCLEAR ... 5
- dist_kmer_replacement_inference 6
- dist_replacement ... 6
- dist_replacement.phyDat.kmer_summary.integer-method 7
- dist_replacement.phyDat.missing.integer-method 7
- dist_weighted_hamming 8
- dist_weighted_hamming.phyDat.numeric-method 8
- downsample ... 10
- downsample.igraph-method 10
- downsample.lineage_tree-method 11
- get_distance_prior .. 11
- get_leaves ... 12
- get_leaves.lineage_tree-method 12
- get_node_names .. 13
- get_replacement_probability 13
- get_transition_probability 14
- lineages ... 14
- positional_mutation_prob 15
- process_sequence .. 15
- process_sequence.phyDat-method 16
- prune .. 16
- prune.igraph-method 17
- prune.lineage_tree-method 17
- random_tree .. 18
- rbind.phyDat-method 18
- sample_outcome_prob 19
- simulate .. 19
- simulate.lineage_tree_config.missing-method 20
- simulate.lineage_tree_config.phyDat-method 20
- simulate_core ... 21
- sim_seqdata .. 22
- substr_kmer ... 23
- substr_kmer.kmer_summary-method 24
- subtract ... 24
- subtract.lineage_tree.lineage_tree-method 25
- subtree .. 25
- subtree.lineage_tree-method 26
- subtree.phylo-method 26
- summarize_kmer .. 27
- summarize_kmer.phyDat-method 27
- summarize_kmer_core 28
- WH ... 29
- WH_train .. 30
- WH_train_fit ... 31
as_igraph

Description

Generic function for as_igraph

Usage

as_igraph(x, ...)

Arguments

x a phylo object
... additional parameters

Value

an igraph object
as_lineage_tree

Generic function for as_lineage_tree

Description

Convert a phylo object and a phyDat object to a lineage_tree object

Usage

```r
## S4 method for signature 'phyDat,phylo,lineage_tree_config'
as_lineage_tree(x, y, config, ...)
```

Arguments

- `x`: a phyDat object
- `y`: a phylo object
- `config`: a lineage_tree_config object
- `...`: additional parameters

Value

a lineage_tree object
as_phylo

Generic function for as_phylo

Description

Generic function for as_phylo

Usage

as_phylo(x, ...)

Arguments

x

a graph object

...

additional parameters

as_phylo,igraph-method

as_phylo

Description

Convert an igraph object to a phylo object

Usage

S4 method for signature 'igraph'

as_phylo(x)

Arguments

x

an igraph object

Value

a phylo object or a igraph object

DCLEAR

DCLEAR: A package for DCLEAR: Distance based Cell LinEAge Re-construction

Description

Distance based methods for inferring lineage trees from single cell data
dist_kmer_replacement_inference

Core function of computing kmer replacement distance

Description

Compute the sequence distance matrix using inferred kmer replacement matrix

Usage

dist_kmer_replacement_inference(x, kmer_summary, k = 2)

Arguments

x input data in phyDat format
kmer_summary a kmer_summary object
k k-mers (default k=2)

Value

a dist object

Author(s)

Wuming Gong (gongx030@umn.edu)

dist_replacement

Generic function for dist_replacement

Description

Generic function for dist_replacement

Usage

dist_replacement(x, kmer_summary, k, ...)

Arguments

x a sequence object
kmer_summary a kmer_summary object
k k-mer length
... additional parameters
Compute the kmer replacement distance

Description

Compute the kmer replacement distance between sequences

Usage

S4 method for signature 'phyDat,kmer_summary,integer'

```r
dist_replacement(x, kmer_summary, k = 2, ...)
```

Arguments

- `x`: input data in phyDat format
- `kmer_summary`: a kmer_summary object
- `k`: k-mer length
- `...`: other arguments passed to substr_kmer

Value

a dist object

Author(s)

Wuming Gong (gongx030@umn.edu)
Arguments

- **x**: input data in phyDat format
- **kmer_summary**: a kmer_summary object
- **k**: k-mer length
- **...**: other arguments passed to substr_kmer

Value

- a dist object

Author(s)

- Wuming Gong (gongx030@umn.edu)

Description

Generic function for dist_weighted_hamming

Usage

```r
dist_weighted_hamming(x, wVec, ...)```

Arguments

- **x**: a sequence object
- **wVec**: weight vector
- **...**: additional parameters

Description

implementation of weighted hamming algorithm

Usage

```r
S4 method for signature 'phyDat,numeric'
dist_weighted_hamming(x, wVec, dropout = FALSE)```
Arguments

- **x**: Sequence object of 'phyDat' type.
- **wVec**: Weight vector for the calculation of weighted hamming distance
- **dropout**: Different weighting strategy is taken to consider interval dropout with dropout = 'TRUE'. Default is, dropout = 'FALSE'.

Value

Calculated distance matrix of input sequences. The result is a 'dist' class object.

Author(s)

Il-Youp Kwak

Examples

```r
library(DCLEAR)
library(phangorn)
library(ape)

set.seed(1)
mu_d1 = c( 30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10  # number of cell samples
m = 10    # number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03, 
d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)
## RF score with hamming distance
D_hm = dist.hamming(sD$seqs)
tree_hm = NJ(D_hm)
RF.dist(tree_hm, sD$tree, normalize = TRUE)
## RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1
D_wh = dist_weighted_hamming(sD$seqs, InfoW, dropout = FALSE)
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)
## RF score with weighted hamming, considering dropout situation
InfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3
D_wh2 = dist_weighted_hamming(sD$seqs, InfoW, dropout = TRUE)
tree_wh2 = NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)
```
downsample
Generic function for downsample

Description
Generic function for downsample

Usage
downsample(x, ...)

Arguments
- `x`: a data object
- `...`: additional parameters

downsample,igraph-method
downsample

Description
Sample a lineage tree

Usage
```r
## S4 method for signature 'igraph'
downsample(x, n = 10L, ...)
```

Arguments
- `x`: a igraph object
- `n`: number of leaves (tips) in the down-sampled tree
- `...`: additional parameters

Value
a phylo object
downsample, lineage_tree-method

downsample

Description

Sample a lineage tree

Usage

```r
## S4 method for signature 'lineage_tree'
downsample(x, n = 10L, ...)
```

Arguments

- `x`: a lineage_tree object
- `n`: number of leaves (tips) in the down-sampled tree
- `...`: additional parameters

Value

a lineage_tree object

get_distance_prior

Description

prior distribution of distance

Usage

```r
generate_distance_prior(x)
```

Arguments

- `x`: a kmer_summary object

Value

a probabilistic vector of the distribution of nodal distances

Author(s)

Wuming Gong (gongx030@umn.edu)
get_leaves

Generic function for get_leaves

Description

Generic function for get_leaves

Usage

get_leaves(x, ...)

Arguments

x a lineage_tree object
...
 additional parameters

get_leaves,lineage_tree-method

Description

Get the leaf sequences

Usage

S4 method for signature 'lineage_tree'
get_leaves(x, ...)

Arguments

x a lineage_tree object
...
 additional parameters

Value

a phyDat object
get_node_names

Description
Convenient function for get node names

Usage
get_node_names(x)

Arguments
x

Value
node names

Author(s)
Wuming Gong (gongx030@umn.edu)

get_replacement_probability

Description
Compute $p(A,B|d)$, the conditional probability of seeing a replacement of from kmer A to B or vice versa

Usage
get_replacement_probability(x)

Arguments
x

Value
an 3D probabilistic array (kmers by kmers by distances)

Author(s)
Wuming Gong (gongx030@umn.edu)
get_transition_probability

Description
Compute \(P(A,X|B,Y,d) \), the conditional probability of seeing a replacement from A to B given the previous replacement B from Y at nodal distance d.

Usage
get_transition_probability(x)

Arguments
x a kmer_summary object

Value
an 3D probabilistic array (kmer by kmers by distances)

Author(s)
Wuming Gong (gongx030@umn.edu)

lineages
Lineage data

Description
Lineage data

Usage
data(lineages)

Format
An object of class list of length 100.

Examples
data(lineages)
positional_mutation_prob

Description

Convenient function for get node names

Usage

```r
positional_mutation_prob(x, config)
```

Arguments

- `x`: a phyDat object
- `config`: a lineage_tree_config object

Value

A positional mutation probability matrix

process_sequence

Generic function for `process_sequence`

Description

Generic function for `process_sequence`

Usage

```r
process_sequence(x, ...)
```

Arguments

- `x`: a sequence object
- `...`: additional parameters
process_sequence, phyDat-method

Process sequences

Description

Process sequences

Usage

S4 method for signature 'phyDat'
process_sequence(x, division = 16L)

Arguments

x input data in phyDat format
division cell divisions (default: 16L)

Value

a ‘lineage_tree_config’ object

Author(s)

Wuming Gong (gongx030@umn.edu)

prune

Generic function for prune

Description

Generic function for prune

Usage

prune(x, ...)

Arguments

x a lineage_tree object
... additional parameters
prune.igraph-method

Description
Trim a full lineage tree into phylogenetic tree

Usage
S4 method for signature 'igraph'
prune(x, weighted = TRUE, ...)

Arguments
x an igraph object
weighted whether or not keep the edge weight (default: TRUE)
... additional parameters

Value
an igraph object

prune,lineage_tree-method

Description
Trim a full lineage tree into phylogenetic tree

Usage
S4 method for signature 'lineage_tree'
prune(x, ...)

Arguments
x a lineage_tree object
... additional parameters passed to as.phylo()

Value
a lineage_tree object
random_tree

Description
Simulate a random lineage tree

Usage
random_tree(n_samples, division = 16L)

Arguments
- n_samples: number of samples to simulate
- division: number of cell division

Value
a data frame

Author(s)
Wuming Gong (gongx030@umn.edu)

rbind,phyDat-method

Description
Concatenate multiple phyDat objects

Usage
S4 method for signature 'phyDat'
rbind(..., deparse.level = 1)

Arguments
- ...: a list of phyDat objects
- deparse.level: see definition in generic rbind

Value
a phyDat object
sample_outcome_prob

Description
Sampling outcome probability based on a gamma distribution

Usage
```r
sample_outcome_prob(config, num_states = 20L, shape = 0.1, scale = 2)
```

Arguments
- `config`: a lineage_tree_config object
- `num_states`: number of states used in simulation.
- `shape`: shape parameter in gamma distribution
- `scale`: scale parameter in gamma distribution

Value
a probability vector for each alphabet

Author(s)
Wuming Gong (gongx030@umn.edu)

simulate

Generic function for simulate

Description
Generic function for simulate

Usage
```r
simulate(config, x, ...)
```

Arguments
- `config`: a lineage_tree_config object
- `x`: a sequence object
- `...`: additional parameters
Description

Simulate a cell lineage tree. Adoped from https://github.com/elifesciences-publications/CRISPR_recorders_sims/blob/master/MATLAB_sims/GESTALT_30hr_1x_simulation.m

Usage

S4 method for signature 'lineage_tree_config,missing'
simulate(config, x, n_samples = 200, ...)

Arguments

- **config**: simulation configuration; a lineage_tree_config object
- **x**: missing
- **n_samples**: number of samples to simulate
- **...**: additional parameters

Value

- a lineage_tree object

Author(s)

- Wuming Gong (gongx030@umn.edu)

Description

Simulate a cell lineage tree based on a set of sequences

Usage

S4 method for signature 'lineage_tree_config,phyDat'
simulate(config, x, n_samples = 200L, ...)

...
Arguments

- `config`: simulation configuration; a lineage_tree_config object
- `x`: a sequence object
- `n_samples`: number of samples to simulate
- `...`: additional parameters

Value

- a lineage_tree object

Author(s)

Wuming Gong (gongx030@umn.edu)

Description

Simulate a cell lineage tree Adopted from https://github.com/elifesciences-publications/CRISPR_recorders_sims/blob/master/MATLAB_sims/GESTALT_30hr_1x_simulation.m

Usage

```r
simulate_core(config, mp = NULL, n_samples = 200L, ...)
```

Arguments

- `config`: simulation configuration; a lineage_tree_config object
- `mp`: site specific mutation probability
- `n_samples`: number of samples to simulate
- `...`: additional parameters
Description

Generate singe cell barcode data set with tree shaped lineage information

Usage

```r
sim_seqdata(
  sim_n = 200,
  m = 200,
  mu_d = 0.03,
  d = 15,
  n_s = 23,
  outcome_prob = NULL,
  p_d = 0.003
)
```

Arguments

- `sim_n` Number of cell samples to simulate.
- `m` Number of targets.
- `mu_d` Mutation rate. (a scalar or a vector)
- `d` Number of cell divisions.
- `n_s` Number of possible outcome states
- `outcome_prob` Outcome probability vector (default is NULL)
- `p_d` Dropout probability

Value

The result is a list containing two objects, 'seqs' and 'tree'. The 'seqs' is 'phyDat' object of 'sim_n' number of simulated barcodes corresponding to each cell, and The 'tree' is a 'phylo' object, a ground truth tree structure for the simulated data.

Author(s)

Il-Youp Kwak

Examples

```r
library(DCLEAR)
library(phangorn)
library(ape)
```
set.seed(1)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)/sum(mu_d1)
simn = 10 # number of cell samples
m = 10 ## number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03, d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)
RF score with hamming distance
D_hm = dist.hamming(sD$seqs)
tree_hm = NJ(D_hm)
RF.dist(tree_hm, sD$tree, normalize = TRUE)

RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1
D_wh = dist_weighted_hamming(sD$seqs, InfoW, dropout=FALSE)
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)

RF score with weighted hamming, considering dropout situation
nfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3
D_wh2 = dist_weighted_hamming(sD$seqs, InfoW, dropout = TRUE)
tree_wh2 = NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)

substr_kmer

Generic function for substr_kmer

Description

Generic function for substr_kmer

Usage

substr_kmer(x, ...)

Arguments

x a kmer object
... additional parameters
Description

Summarize the short k-mer summary from the long k-mer summary

Usage

```r
## S4 method for signature 'kmer_summary'
substr_kmer(x, k = 2)
```

Arguments

- `x`: a `kmer_summary` object
- `k`: k-mer length (default: 2)

Value

a new `kmer_summary` object

Author(s)

Wuming Gong (gongx030@umn.edu)

subtract

Generic function for subtract

Description

Generic function for subtract

Usage

```r
subtract(x, y, ...)
```

Arguments

- `x`: a `lineage_tree` object
- `y`: a `lineage_tree` object
- `...`: additional parameters
Description

Subtract a subtree from a large tree

Usage

```r
## S4 method for signature 'lineage_tree,lineage_tree'
subtract(x, y, ...)
```

Arguments

- `x`: a `lineage_tree` object
- `y`: a `lineage_tree` object
- `...`: additional parameters

Value

a `lineage_tree` object

Description

Generic function for `subtree`

Usage

```r
subtree(x, ...)
```

Arguments

- `x`: a `lineage_tree` object
- `...`: additional parameters
subtree, lineage_tree-method

subtree

Description

Extract a subtree with specific leaves

Usage

```r
# S4 method for signature 'lineage_tree'
subtree(x, leaves = NULL, ...)
```

Arguments

- `x`: a lineage_tree object
- `leaves`: leaves of the extracted tree
- `...`: additional parameters

Value

A lineage_tree object

subtree, phylo-method

subtree

Description

Extract a subtree with specific leaves

Usage

```r
# S4 method for signature 'phylo'
subtree(x, leaves = NULL, ...)
```

Arguments

- `x`: a phylo object
- `leaves`: leaves of the extracted tree
- `...`: additional parameters

Value

A phylo object
summarize_kmer

Generic function for summarize_kmer

Description

Generic function for summarize_kmer

Usage

summarize_kmer(x, ...)

Arguments

x a sequence object
...
additional parameters

summarize_kmer,phyDat-method

summarize_kmer

Description

Summarize kmers distributions with input sequences

Usage

S4 method for signature 'phyDat'
summarize_kmer(
 x,
 division = 16L,
 k = 2,
 reps = 20L,
 n_samples = 200L,
 n_nodes = 100L,
 n_targets
)

Arguments

x input data as a phyDat object
division number of cell division
k k-mer (default = 2)
reps number of simulated trees
n_samples number of samples to simulate
summarize_kmer_core

\begin{verbatim}
 n_nodes number of nodes to sample (including both leaves and internal nodes)
 n_targets sequence length. If this argument is missing, the length of the input sequences
 will be used.

Value
 a kmer_summary object

Author(s)
 Wuming Gong (gongx030@umn.edu)
\end{verbatim}

Description

Summarize kmer distributions (core function)

Usage

summarize_kmer_core(
 k = 2,
 reps = 20L,
 n_samples = 200L,
 n_nodes = 100L,
 config = NULL
)

Arguments

k k-mer (default = 2)
reps number of simulated trees
n_samples number of samples to simulate
n_nodes number of nodes to sample (including both leaves and internal nodes)
config lineage tree configuration (a lineage_tree_config object)

Value

a kmer_summary object

Author(s)

Wuming Gong (gongx030@umn.edu)
Description

implementation of weighted hamming algorithm

Usage

\texttt{WH(x, InfoW, dropout = FALSE)}

Arguments

\begin{itemize}
 \item \texttt{x} \hspace{1cm} Sequence object of 'phyDat' type.
 \item \texttt{InfoW} \hspace{1cm} Weight vector for the calculation of weighted hamming distance
 \item \texttt{dropout} Different weighting strategy is taken to consider interval dropout with dropout = 'TRUE'. Default is, dropout = 'FALSE'.
\end{itemize}

Value

Calculated distance matrix of input sequences. The result is a 'dist' class object.

Author(s)

Il-Youp Kwak

Examples

\begin{verbatim}
set.seed(1)
library(phangorn)
mu_d1 = c(30, 20, 10, 5, 5, 1, 0.01, 0.001)
mu_d1 = mu_d1/sum(mu_d1)
simn = 10 # number of cell samples
m = 10 ## number of targets
sD = sim_seqdata(sim_n = simn, m = m, mu_d = 0.03,
 d = 12, n_s = length(mu_d1), outcome_prob = mu_d1, p_d = 0.005)
RF score with hamming distance
D_h = dist.hamming(sD$seqs)
tree_h= NJ(D_h)
RF.dist(tree_h, sD$tree, normalize = TRUE)
RF score with weighted hamming
InfoW = -log(mu_d1)
InfoW[1:2] = 1
D_wh = WH(sD$seqs, InfoW)
\end{verbatim}
tree_wh = NJ(D_wh)
RF.dist(tree_wh, sD$tree, normalize = TRUE)

RF score with weighted hamming, considering dropout situation
nfoW = -log(mu_d1)
InfoW[1] = 1
InfoW[2] = 12
InfoW[3:7] = 3

D_wh2 = WH(sD$seqs, InfoW, dropout=TRUE)
tree_wh2= NJ(D_wh2)
RF.dist(tree_wh2, sD$tree, normalize = TRUE)

WH_train

Train weights for WH

Description

Train weights for WH and output weight vector

Usage

`WH_train(X, loc0 = 2, locDropout = 1, locMissing = FALSE)`

Arguments

- `X` (a list of k number of input data, X[[1]] ... X[[k]]. The ith data have sequence information as phyDat format in X[[i]][[1]], and tree information in X[[i]][[2]] as phylo format.
- `loc0` (weight location of initial state)
- `locDropout` (weight location of dropout state)
- `locMissing` (weight location of missing state, FALSE if there is no missing values)

Value

A weight vector

Author(s)

Il-Youp Kwak (ikwak2@cau.ac.kr)
WH_train_fit

Train weights for WH, and output distance object

Description

Train weights for WH using the given data, and fit the distance matrix for an input sequence.

Usage

WH_train_fit(x, X)

Arguments

x
input data in phyDat format

X
a list of k number of input data, X[[1]] ... X[[k]]. The ith data have sequence information as phyDat format in X[[i]][[1]], and tree information in X[[i]][[2]] as phylo format.

Value

a dist object

Author(s)

Il-Youp Kwak (ikwak2@cau.ac.kr)
Index

* datasets
 lineages, 14
 as_igraph, 3
 as_igraph, phylo-method, 3
 as_lineage_tree, 4
 as_lineage_tree, phyDat, phylo, lineage_tree_config-method, 4
 as_phylo, 5
 as Phylo, igraph-method, 5
 DCLEAR, 5
 dist_kmer_replacement_inference, 6
 dist_replacement, 6
 dist_replacement, phyDat, kmer_summary, integer-method, 7
 dist_replacement, phyDat, missing, integer-method, 7
 dist_weighted_hamming, 8
 dist_weighted_hamming, phyDat, numeric-method, 8
 downsample, 10
 downsample, igraph-method, 10
 downsample, lineage_tree-method, 11
 get_distance_prior, 11
 get_leaves, 12
 get_leaves, lineage_tree-method, 12
 get_node_names, 13
 get_replacement_probability, 13
 get_transition_probability, 14
 lineages, 14
 positional_mutation_prob, 15
 process_sequence, 15
 process_sequence, phyDat-method, 16
 prune, 16
 prune, igraph-method, 17
 prune, lineage_tree-method, 17
 random_tree, 18
 rbind, phyDat-method, 18
 sample_outcome_prob, 19
 sim_seqdata, 22
 simulate, 19
 simulate, lineage_tree_config, missing-method, 20
 simulate, lineage_tree_config, phyDat-method, 20
 simulate_core, 21
 substr_kmer, 23
 substr_kmer, kmer_summary-method, 24
 subtract, 24
 subtree, lineage_tree-method, 25
 subtree, phylo-method, 26
 summarize_kmer, 27
 summarize_kmer, phyDat-method, 27
 summarize_kmer_core, 28
 WH, 29
 WH_train, 30
 WH_train_fit, 31