Package ‘DUBStepR’

October 5, 2021

Type Package
Title Correlation-Based Feature Selection for Single-Cell RNA Sequencing Data
Version 1.2.0
Maintainer Bobby Ranjan <ranjan_bobby@gis.a-star.edu.sg>
License MIT + file LICENSE
Encoding UTF-8
LazyData true
Imports Matrix, matrixcalc, RANN, qlcMatrix, parallel, stats, Seurat, methods, graphics
RoxygenNote 7.1.1
Depends R (>= 3.5.0)
Suggests rmarkdown, knitr, hdf5r, dplyr
VignetteBuilder knitr
NeedsCompilation no
Author Bobby Ranjan [aut, cre],
 Kunal Mishra [ctb],
 Shyam Lab [cph],
 Bryan Hanson [ctb],
 Damian Coventry [ctb],
 Brandon Crosby [ctb],
 Gregoire Thomas [ctb]
Repository CRAN
Date/Publication 2021-10-05 11:00:02 UTC

R topics documented:

- DUBStepR .. 2
- findElbow .. 3
- getCorrelationRange ... 4
- getFilteredData ... 4
- getGGC ... 5
- getOptimalFeatureSet .. 5
- logNormalize .. 6
- pbmc_norm_small_data .. 7
- runStepwiseReg ... 7

Index

DUBStepR

DUBStepR - Obtain a list of feature genes to characterise cell types

Description

DUBStepR - Obtain a list of feature genes to characterise cell types

Usage

```r
DUBStepR(
  input.data,
  min.cells = 0.05 * ncol(input.data),
  species = "human",
  optimise.features = TRUE,
  k = 10,
  num.pcs = 20,
  error = 0
)
```

Arguments

- `input.data` input gene expression matrix (genes x cells)
- `min.cells` minimum number of cells to filter genes out
- `species` species to use for gene filtering: "human" (default), "mouse" and "rat"
- `optimise.features` Determine optimal feature set using density index
- `k` number of nearest neighbours. Default is 10
- `num.pcs` number of principal components to represent sc data. Default is 20
- `error` Acceptable error margin for kNN computation. Default is 0, but is set to 1 for large datasets
findElbow

Value
Returns optimal feature set

Author(s)
ranjanb

Examples
```r
res <- DUBStepR(input.data = pbmc_norm_small_data)
```

Description
This utility function finds the elbow in a curve which is concave relative to a line drawn between the first and last points. The elbow is defined as the point with the greatest orthogonal distance from that line.

Usage
```r
findElbow(y, ylab = "y values", plot = FALSE, returnIndex = TRUE)
```

Arguments
- `y` Numeric vector of y values for the curve.
- `ylab` Y-axis label.
- `plot` Logical. Should a plot be made?
- `returnIndex` Logical. Should the return value be the index of the elbow point?

Value
If `returnIndex = TRUE`, the index of the elbow point. If `returnIndex = FALSE`, a data frame containing an index values (x), the y values passed to the function, and the the orthogonal distances of the y values from the line connecting the first and last points. `which.max(data_frame_name$dist)` will give the index of the elbow point.

Warning
This function makes some simple checks that the data is concave as defined above. Even so, it may give answers in some cases that are not valid. Please check on typical data that you encounter to verify that it works in your cases.

Author(s)
Bryan A. Hanson, DePauw University. <hanson@depauw.edu>
References

The concept of this function is based on the clever idea in the Stackoverflow post at stackoverflow.com/a/2022348/633251 and relies on code posted at paulbourke.net/geometry/pointlineplane/pointline.r (referenced in the SO post). Minor modifications to the code were made to that code in order to vectorize it.

getCorrelationRange

Compute the correlation range values for all genes in the gene-gene correlation matrix.

Description

Compute the correlation range values for all genes in the gene-gene correlation matrix.

Usage

getCorrelationRange(correlation_matrix)

Arguments

correlation_matrix
gene-gene correlation matrix

Value

list of p-values, adjusted p-values and correlation ranges for each gene

getFilteredData

Filter the dataset by removing lowly expressed genes and mitochondrial, spike-in and ribosomal genes

Description

Filter the dataset by removing lowly expressed genes and mitochondrial, spike-in and ribosomal genes.

Usage

getFilteredData(data, min.cells = 0.05 * ncol(data), species = "human")

Arguments

data
gene expression matrix

min.cells
gene expression matrix

species
species to use for gene filtering: "human" (default), "mouse" and "rat"
getGGC

Value

filtered gene-expression matrix

getGGC

Compute the correlation range values for all genes in the gene-gene correlation matrix

Description

Compute the correlation range values for all genes in the gene-gene correlation matrix

Usage

getGGC(data)

Arguments

data log-transformed gene-expression matrix

Value

list of genes with their z-transformed correlation range values

getOptimalFeatureSet

Determine the optimal feature set using Density Index (DI)

Description

Determine the optimal feature set using Density Index (DI)

Usage

getOptimalFeatureSet(
 filt.data,
 ordered.genes,
 elbow.pt = 25,
 k = 10,
 num.pcs = 20,
 error = 0
)

Arguments

filt.data log-transformed filtered gene-expression matrix
ordered.genes genes ordered after stepwise regression
elbow.pt Elbow point to start determining optimal feature set
k number of nearest neighbours for CI computation
num.pcs number of principal components to represent sc data. Default is 20.
error Acceptable error margin for kNN computation. Default is 0, but is set to 1 for large datasets.

Value

optimal set of feature genes

logNormalize log-transform and normalize data by sequencing depth

Description

Log-transform and normalize data by sequencing depth

Usage

logNormalize(raw.data, scale.factor = 10000)

Arguments

raw.data raw gene expression matrix
scale.factor scaling factor for normalization

Value

log-normalized gene expression matrix
pbmc_norm_small_data

Description

Normalized and log-transformed data from the pbmc_small object of the Seurat package.

Usage

```r
pbmc_norm_small_data
```

Format

An object of class `dgCMatrix` with 230 rows and 80 columns.

References

runStepwiseReg

Run step-wise regression to order the features

Description

Run step-wise regression to order the features

Usage

```r
runStepwiseReg(ggc)
```

Arguments

```r
ggc gene-gene correlation matrix
```

Value

optimal feature set
Index

* datasets
 pbmc_norm_small_data, 7

DUBStepR, 2

findElbow, 3

getCorrelationRange, 4
getFilteredData, 4
getGGC, 5
getOptimalFeatureSet, 5
logNormalize, 6

pbmc_norm_small_data, 7

runStepwiseReg, 7