Package ‘DisaggregateTS’

January 18, 2022

Title High-Dimensional Temporal Disaggregation

Version 1.0

Imports Rdpack, zoo, lars, Matrix, withr

RdMacros Rdpack

License GPL (>= 3)

Encoding UTF-8

RoxygenNote 7.1.2

NeedsCompilation no

Author Luke Mosley [aut, cre],
Kaveh S. Nobari [aut] (<https://orcid.org/0000-0002-4053-0781>)

Maintainer Luke Mosley <l.mosley@lancaster.ac.uk>

Repository CRAN

Date/Publication 2022-01-18 08:12:48 UTC

R topics documented:

SparseTD ... 2
TempDisaggDGP .. 3
TempDisaggToolbox ... 4

Index 6
SparseTD
High-Dimensional Temporal Disaggregation

Description
This function provides the Sparse Temporal Disaggregation (spTD) methods proposed by Mosley et al. (2021) to perform temporal disaggregation of time series data in both standard and high-dimensional settings. Variable selection is also performed by a LASSO penalty Tibshirani (1996) or an Adaptive LASSO penalty Zou (2006).

Usage
```r
SparseTD(
  Y,
  X = matrix(data = rep(1, times = nrow(Y)), nrow = nrow(Y)),
  penalty = "lasso",
  aggMat = "sum"
)
```

Arguments
- `Y` The low-frequency response vector.
- `X` The high-frequency indicator matrix.
- `penalty` Nominates the choice of regularisation (`'lasso'` or `'adalasso'`).
- `aggMat` Aggregation matrix according to `'first'`, `'sum'`, `'average'`, `'last'`.

Value
- `y_Est` Estimated high-frequency response series.
- `beta_Est` Estimated coefficient vector.
- `rho_Est` Estimated residual autocorrelation parameter.
- `ul_Est` Estimated aggregate residual series.
- `lambda` Tuning parameter used for lasso/adalasso.

References
Examples

data = TempDisaggDGP(n_l=50,m=4,p=10,beta=3,sparsity=0.5,method='Chow-Lin',rho=0.5)
X = data$X_Gen
Y = data$Y_Gen
fit_spTD = SparseTD(Y=Y, X=X)
y_hat = fit_spTD$y_Est

Description

This function generates the high-frequency \(mn_l \times 1 \) response vector \(y \), according to
\[
y = X \beta + \epsilon
\]
where \(X \) is an \(mn_l \times p \) matrix of indicator series, and the \(mn_l \times 1 \) coefficient vector may be sparse. The low-frequency \(n_l \times 1 \) vector \(Y \) can be generated by pre-multiplying a disaggregation matrix \(n_l \times mn_l \) matrix, such that the sum, the average, the last or the first value of \(y \) equates the corresponding \(Y \) observation. For a comprehensive review, see Dagum and Cholette (2006).

Usage

TempDisaggDGP(
 n_l,
m,
p = 1,
beta = 1,
sparsity = 1,
method = "Denton-Cholette",
aggMat = "sum",
rho = 0,
mean_X = 0,
sd_X = 1,
sd_e = 1,
simul = FALSE,
setSeed = 42
)

Arguments

- \(n_l \): Size of the low frequency series.
- \(m \): The integer multiple for generating the high-frequency series.
- \(p \): The number of high-frequency indicator series to include.
- \(\beta \): The positive and negative beta elements for the coefficient vector.
- \(\text{sparsity} \): Sparsity percentage of the coefficient vector.
- \(\text{method} \): DGP according to 'Denton', 'Denton-Cholette', 'Chow-Lin', 'Fernandez', 'Litterman'.
aggMat: Aggregation matrix according to 'first', 'sum', 'average', 'last'.
rho: The residual autocorrelation coefficient. Default is 0.
mean_X: Mean of the design matrix. Default is 0.
std_X: Standard deviation of the design matrix. Default is 1.
std_e: Standard deviation of the errors. Default is 1.
simul: When 'TRUE' the design matrix and the coefficient vector are fixed.
setSeed: The seed used when 'simul' is set to 'TRUE'.

Value

- y_Gen: Generated high-frequency response series.
- X_Gen: Generated high-frequency indicator series.
- Beta_Gen: Generated coefficient vector.
- e_Gen: Generated high-frequency residual series.

References

Examples

data = TempDisaggDGP(n_l=50, m=4, p=4, method="Chow-Lin", rho=0.5)
X = data$X_Gen
Y = data$Y_Gen

Description

Usage

TempDisaggToolbox(
 Y,
 X = matrix(data = rep(1, times = nrow(Y)), nrow = nrow(Y)),
 method = "Denton-Cholette",
 aggMat = "sum",
 Denton = "first"
)
TempDisaggToolbox

Arguments

Y The low-frequency response vector.
X The high-frequency indicator matrix.
method Disaggregation using 'Denton', 'Denton-Cholette', 'Chow-Lin', 'Fernandez', 'Litterman'.
aggMat Aggregation matrix according to 'first', 'sum', 'average', 'last'.
Denton The 'absolute', 'first', 'second' and 'proportional' difference Sigma for the Denton method.

Value

y_Est Estimated high-frequency response series.
beta_Est Estimated coefficient vector.
rho_Est Estimated residual autocorrelation parameter.
ul_Est Estimated aggregate residual series.

References

Examples

data = TempDisaggDGP(n_l=50,m=4,p=4,method='Chow-Lin',rho=0.5)
X = data$X_Gen
Y = data$Y_Gen
fit_chowlin = TempDisaggToolbox(Y=Y,X=X,method='Chow-Lin')
y_hat = fit_chowlin$y_Est
Index

* Chow-Lin
 TempDisaggToolbox, 4
* DGP
 TempDisaggDGP, 3
* Denton-Cholette
 TempDisaggToolbox, 4
* Denton
 TempDisaggToolbox, 4
* Disaggregation
 SparseTD, 2
* Fernandez
 TempDisaggToolbox, 4
* Lasso
 SparseTD, 2
* Litterman
 TempDisaggToolbox, 4
* Series
 SparseTD, 2
* Sparse
 SparseTD, 2
* Temporal
 SparseTD, 2
* Time
 SparseTD, 2
* high-frequency
 TempDisaggDGP, 3
* low-frequency
 TempDisaggDGP, 3
* sparse
 TempDisaggDGP, 3
* temporal-disaggregation
 TempDisaggToolbox, 4

SparseTD, 2

TempDisaggDGP, 3
TempDisaggToolbox, 4