Package ‘EM.Fuzzy’

August 16, 2018

Type Package

Title EM Algorithm for Maximum Likelihood Estimation by Non-Precise Information

Version 1.0

Date 2018-08-08

Author Abbas Parchami (Department of Statistics, Faculty of Mathematics and Computer, Shahid Bahonar University of Kerman, Kerman, Iran)

Maintainer Abbas Parchami <parchami@uk.ac.ir>

Description The EM algorithm is a powerful tool for computing maximum likelihood estimates with incomplete data. This package will help to applying EM algorithm based on triangular and trapezoidal fuzzy numbers (as two kinds of incomplete data). A method is proposed for estimating the unknown parameter in a parametric statistical model when the observations are triangular or trapezoidal fuzzy numbers. This method is based on maximizing the observed-data likelihood defined as the conditional probability of the fuzzy data; for more details and formulas see Denoeux (2011) <doi:10.1016/j.fss.2011.05.022>.

License LGPL (>= 3)

Imports FuzzyNumbers, DISTRIB

NeedsCompilation no

Repository CRAN

Date/Publication 2018-08-16 09:30:08 UTC

R topics documented:

EM.Fuzzy-package .. 2
EM.Trapezoidal .. 3
EM.Triangular .. 5

Index 9
Description

The main goal of this package is easy estimation of the unknown parameter of a continues distribution by EM algorithm where the observed data are fuzzy rather than crisp. This package contains two major functions: (1) the function `emNtriangular` works by Triangular Fuzzy Numbers (TFNs), and (2) the function `emNtrapezoidal` works by Trapezoidal Fuzzy Numbers (TrFNs).

Author(s)

Abbas Parchami

References

Examples

```r
library(FuzzyNumbers)
library(DISTRIB, warn.conflicts = FALSE)

# Let us we are going to estimation the unknown mean of Normal population with known variance # (e.g, sd(X) = 0.5) on the basis of 11 trapezoidal fuzzy numbers (which we simulate them in # bellow for simplification).
n = 11
set.seed(1000)
c1 = rnorm(n, 10, .5)
c2 = rnorm(n, 10, .5)
for(i in 1:n) {if (c1[i] > c2[i]) { zarf <- c1[i]; c1[i] <- c2[i]; c2[i] <- zarf }}
round(c1,3); round(c2,3)
c1 <= c2
l = runif(n, 0,1); round(l,3)
u = runif(n, 0,1); round(u,3)

EM.Trapezoidal(T.dist="norm", T.dist.par=c(NA,0.5), par.space=c(-5,30), c1, c2, l, u, start=4, ebs=.0001, fig=2)
```
EM.Trapezoidal

MLE by EM algorithm based on Trapezoidal Fuzzy Data

Description

This function can easily obtain Maximum Likelihood Estimation (MLE) for the unknown one-dimensional parameter on the basis of Trapezoidal Fuzzy observation.

Usage

EM.Trapezoidal(T.dist, T.dist.par, par.space, c1, c2, l, u, start, ebs=0.001, fig = 2)

Arguments

T.dist
the distribution name of the random variable is determined by characteristic element T.dist. The names of distributions are similar to stats package.

T.dist.par
a vector of distribution parameters with considered ordering in stats package. If T.dist has only one parameter (which obviously is unknown) the user must be considered T.dist.par=NA. Also, it may be T.dist has two parameters which one of them is unknown and another known. In such cases, the user must be considered T.dist.par = c(NA, known parameter) where the first parameter is unknown, and T.dist.par = c(known parameter, NA) where the second parameter is unknown. See below examples.

par.space
an interval which is a subset / subinterval of the parameter space and it must be contain the true value of unknown parameter.

c1
a vector with length(c) = n from the first point of the core-values of TrFNs.

c2
a vector with length(c) = n from the last point of the core-values of TrFNs. Therefore, it is obvious that c1 <= c2.

l
a vector with length(c) = n from the left spreads of TrFNs.

u
a vector with length(c) = n from the right spreads of TrFNs.

start
a real number from par.space which EM algorithm must be started / worked with this start point.

ebs
a real positive small number (e.g., 0.01, 0.001 or 0.1⁶) which determine the accuracy of EM algorithm in estimation of unknown parameter.

fig
a numeric argument which can take only values 0, 1 or 2.

If fig = 0, the result of EM algorithm will not contain any figure.

If fig = 1, then the membership functions of TrFNs will be shown in a figure with different colors.

If fig = 2, then the membership functions of TrFNs will be shown in a figure with the curve of estimated probability density function (p.d.f.) on the basis of maximum likelihood estimation.
EM.Trapezoidal

Value

The parameter computed / estimated in each iteration separately and also the computation of the following values can be asked directly.

MLE

the value of maximum likelihood estimated for unknown parameter by EM algorithm based on TrFNs.

parameter.vector

a vector of the ML estimated parameter for unknown parameter in algorithm which its first elements start and the last element is MLE.

Iter.Num

the number of EM algorithm iterations.

Note

In using this package it must be noted that:

(1) The sample size of TrFNs must be less than 16. This package is able to work with small sample sizes \((n \leq 15)\) and can be extended by the user if needs.

(2) Considering a suitable interval for \(\text{par.space}\) is very important to obtain a true result for EM algorithm. It must be mentioned that this interval must be a sub-interval of the parameter space and the user must check the result of algorithm (MLE). It means that if the obtained MLE (by EM.Trapezoidal) overlay on the boundary of \(\text{par.space}\), then the result is not acceptable and the EM algorithm must be repeated once again with a wider \(\text{par.space}\).

(3) This package is able to work for continuous distributions with one or two parameter which only one of them is unknown and the user wants to estimate it based on TrFNs.

See Also

DISTRIB FuzzyNumbers

Examples

```r
library(FuzzyNumbers)
library(DISTRIB, warn.conflicts = FALSE)

# Example 1: Estimation the unknown mean of Normal population with known variance (e.g, 
# var=0.5^2) based of Trapezoidal FNs.

n = 2
set.seed(1000)
c1 = rnorm(n, 10,.5)
c2 = rnorm(n, 10,.5)
for(i in 1:n) {if (c1[i] > c2[i]) { zarf <- c1[i]; c1[i] <- c2[i]; c2[i] <- zarf }}
round(c1,3); round(c2,3)
c1 <= c2
l = runif(n, 0,1); round(l,3)
u = runif(n, 0,1); round(u,3)

EM.Trapezoidal(T.dist="norm", T.dist.par=c(NA,0.5), par.space=c(-5,30), c1, c2, l, u, start=4, 
ebs=.1, fig=2)
```
Example 2:
\[n = 4 \]
\[
\text{set.seed(10)} \\
c1 = \text{rexp}(n, 2) \\
c2 = \text{rexp}(n, 2) \\
\text{for}(i \text{ in } 1:n) \{ \text{if } (c1[i] > c2[i]) \{ \text{zarf } \leftarrow \text{c1[i]}; \text{c1[i]} \leftarrow \text{c2[i]}; \text{c2[i]} \leftarrow \text{zarf} \} \}
\text{round(c1,3); round(c2,3)} \\
c1 \leftarrow c2 \\
l = \text{runif}(n, 0,1); \text{round(l,3)} \\
u = \text{runif}(n, 0,2); \text{round(u,3)} \\
\text{EM.Trapezoidal}(T.dist="exp", T.dist.par=\text{NA}, \text{par.space}=c(0.1,20), c1, c2, l, u, \text{start}=7, \text{ebs}=.001)\\

Example 3: Estimation the unknown standard deviation of Normal population with known mean (e.g, mean=7) based of Trapezoidal FNs.
\[n = 10 \]
\[
\text{set.seed(123)} \\
c1 = \text{rnorm}(n, 4,1) \\
c2 = \text{rnorm}(n, 4,1) \\
\text{for}(i \text{ in } 1:n) \{ \text{if } (c1[i] > c2[i]) \{ \text{zarf } \leftarrow \text{c1[i]}; \text{c1[i]} \leftarrow \text{c2[i]}; \text{c2[i]} \leftarrow \text{zarf} \} \}
\text{round(c1,3); round(c2,3)} \\
c1 \leftarrow c2 \\
l = \text{runif}(n, 0,.5); \text{round(l,3)} \\
u = \text{runif}(n, 0,.75); \text{round(u,3)} \\
\text{EM.Trapezoidal}(T.dist="norm", T.dist.par=c(4,\text{NA}), \text{par.space}=c(0,40), c1, c2, l, u, \text{start}=1, \text{ebs}=.0001, \text{fig}=2)\\

Example 4: Estimation alpha parameter in Beta distribution.
\[n = 4 \]
\[
\text{set.seed(12)} \\
c1 = \text{rbeta}(n, 2,1) \\
c2 = \text{rbeta}(n, 2,1) \\
\text{for}(i \text{ in } 1:n) \{ \text{if } (c1[i] > c2[i]) \{ \text{zarf } \leftarrow \text{c1[i]}; \text{c1[i]} \leftarrow \text{c2[i]}; \text{c2[i]} \leftarrow \text{zarf} \} \}
\text{round(c1,3); round(c2,3)} \\
c1 \leftarrow c2 \\
l = \text{rbeta}(n, 1,1); \text{round(l,3)} \\
u = \text{rbeta}(n, 1,1); \text{round(u,3)} \\
\text{EM.Trapezoidal}(T.dist="beta", T.dist.par=c(\text{NA},1), \text{par.space}=c(0,10), c1, c2, l, u, \text{start}=1, \text{ebs}=.01, \text{fig}=2)\\
Description

This function can easily obtain Maximum Likelihood Estimation (MLE) for the unknown one-dimensional parameter on the basis of Triangular Fuzzy observation.

Usage

```r
EM.Triangular(T.dist, T.dist.par, par.space, c, l, u, start, ebs = 0.001,
               fig = 2)
```

Arguments

- **T.dist**
 - the distribution name of the random variable is determined by characteristic element T.dist. The names of distributions is similar to stats package.
- **T.dist.par**
 - a vector of distribution parameters with considered ordering in stats package. If T.dist has only one parameter (which obviously is unknown) the user must be considered T.dist.par = NA. Also, it may be T.dist has two parameters which one of them is unknown and another known. In such cases, the user must be considered T.dist.par = c(known parameter, NA) where the first parameter is unknown, and T.dist.par = c(known parameter, NA where the second parameter is unknown. See bellow examples.
- **par.space**
 - an interval which is a subset / subinterval of the parameter space and it must be contain the true value of unknown parameter.
- **c**
 - a vector with length(c) = n from the core-values of TFNs.
- **l**
 - a vector with length(c) = n from the left spreads of TFNs.
- **u**
 - a vector with length(c) = n from the right spreads of TFNs.
- **start**
 - a real number from par.space which EM algorithm must be started / worked with this start point.
- **ebs**
 - a real positive small number (e.g., 0.01, 0.001 or 0.1^6) which determine the accuracy of EM algorithm in estimation of unknown parameter.
- **fig**
 - a numeric argument which can tack only values 0, 1 or 2.
 - If fig = 0, the result of EM algorithm will not contains any figure.
 - If fig = 1, then the membership functions of TFNs will be shown in a figure.
 - If fig = 2, then the membership functions of TFNs will be shown in a figure with the curve of estimated probability density function (p.d.f.) on the basis of maximum likelihood estimation.

Value

The parameter computed / estimated in each iteration separately and also the computation of the following values can be asked directly.

- **MLE**
 - the value of maximum likelihood estimated for unknown parameter by EM algorithm based on TFNs.
- **parameter.vector**
 - a vector of the ML estimated parameter for unknown parameter in algorithm which its first elements start and the last element is MLE.
- **Iter.Num**
 - the number of EM algorithm iterations.
Note

In using this package it must be noted that:

1. The sample size of TFNs must be less than 16. This package is able to work with small sample sizes \(n \leq 15 \) and can be extended by the user if needs.

2. Considering a suitable interval for \(\text{par.space} \) is very important to obtain a true result for EM algorithm. It must be mentioned that this interval must be a sub-interval of the parameter space and the user must check the result of algorithm (MLE). It means that if the obtained MLE (by \(\text{EM.Triangular} \)) overlay on the boundary of \(\text{par.space} \), then the result is not acceptable and the EM algorithm must be repeated once again with a wider \(\text{par.space} \).

3. This package is able to work for continuous distributions with one or two parameter which only one of them is unknown and the user wants to estimate it based on TFNs.

See Also

DISTRIB FuzzyNumbers

Examples

```r
library(FuzzyNumbers)
library(DISTRIB, warn.conflicts = FALSE)

# Example 1:
n = 2
set.seed(131)
c = rexp(n, 2);  round(c,3)
l = runif(n, 0,1); round(l,3)
u = runif(n, 0,2); round(u,3)

EM.Triangular(T.dist="exp", T.dist.par=NA, par.space=c(0,30), c, l, u, start=5, ebs=.1, fig=0)

EM.Triangular(T.dist="exp", T.dist.par=NA, par.space=c(0,30), c, l, u, start=50, ebs=.001, fig=1) #Fast Convergence

EM.Triangular(T.dist="exp", T.dist.par=NA, par.space=c(0,30), c, l, u, start=50, ebs=.1^-6, fig=2)

#Example 2: Computing the mean and the standard deviation of 20 EM estimations:
n = 15
MLEs=c()
for(j in 100:120){
  print(j)
  set.seed(j)
c = rexp(n, 2)
l = runif(n, 0,1)
u = runif(n, 0,2)
MLEs = c(MLEs, EM.Triangular(T.dist="exp", T.dist.par=NA, par.space=c(0,30), c, l, u, start=5,
```
EM.Triangular

ebs=.01, fig=0$MLE)

MLEs # 3.283703 2.475541 3.171026 ...
mean(MLEs) # 2.263996
sd(MLEs) # 0.4952257
hist(MLEs)

Example 3: Estimation the unknown mean of Normal population with known variance
(e.g. var=1) based of TFNs.
n = 5
set.seed(100)
c = rnorm(n, 10,1); round(c,3)
l = runif(n, 0,1); round(l,3)
u = runif(n, 0,1); round(u,3)
EM.Triangular(T.dist="norm", T.dist.par=c(NA,1), par.space=c(-10,30), c, l, u, start=20,
 ebs=.001, fig=2)

Example 4: Estimation the unknown standard deviation of Normal population with known
mean (e.g. mean=7) based of TFNs.
n = 10
set.seed(123)
c = rnorm(n, 7,2); round(c,3)
l = runif(n, 0,2.5); round(l,3)
u = runif(n, 0,1); round(u,3)
EM.Triangular(T.dist="norm", T.dist.par=c(7,NA), par.space=c(0,10), c, l, u, start=5,
 ebs=.0001, fig=2)

Example 5: Estimation the unknown parameter b where X ~ U(a=0,b).
n = 15
set.seed(101)
c = runif(n, 0,5); round(c,3)
l = runif(n, 0,1); round(l,3)
u = runif(n, 0,1); round(u,3)
b <- EM.Triangular(T.dist="unif", T.dist.par=c(0,NA), par.space=c(0,10), c, l, u,
 start=5, ebs=.001, fig=2)$MLE
print(b)