Package ‘EMVS’

October 13, 2021

Type Package

Title The Expectation-Maximization Approach to Bayesian Variable Selection

Version 1.2.1

Date 2021-10-12

Author Veronika Rockova [aut,cre], Gemma Moran [aut]

Maintainer Gemma Moran <gm2918@columbia.edu>

License GPL-3

URL https://doi.org/10.1080/01621459.2013.869223

Imports Rcpp (>= 0.12.16), methods

LinkingTo Rcpp, RcppArmadillo

Suggests knitr, rmarkdown

VignetteBuilder knitr

RoxygenNote 6.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-10-13 15:12:15 UTC

R topics documented:

 EMVS ... 2
 EMVSbest .. 5
 EMVSplot ... 6
 EMVSsummary .. 7

Index 8
EMVS: Bayesian Variable Selection using EM Algorithm

Description

EMVS is a fast deterministic approach to identifying sparse high posterior models for Bayesian variable selection under spike-and-slab priors in linear regression. EMVS performs dynamic posterior exploration, which outputs a solution path computed at a grid of values for the spike variance parameter v_0.

Usage

EMVS(Y, X, v0, v1, type = c("betabinomial", "fixed"), independent = TRUE, beta_init, sigma_init, epsilon = 10^(-5), temperature, theta, a, b, v1_g, direction=c("backward", "forward", "null"), standardize = TRUE, log_v0 = FALSE)

Arguments

Y Vector of continuous responses (n x 1). The responses are expected to be centered.

X Matrix of regressors (n x p). Continuous predictors are expected to be standardized to have mean zero and standard deviation one.

v0 Spike variance parameters. Either a numeric value for a single run or a sequence of increasing values for dynamic posterior exploration.

v1 Slab variance parameter. Needs to be greater than v0.

type Type of the prior distribution over the model space: type="betabinomial" for the betabinomial prior with shape parameters a and b, type="fixed" for the Bernoulli prior with a fixed inclusion probability theta.

independent If TRUE, the regression coefficients and the error variance are taken to be independent a priori (default). If FALSE, a conjugate prior is used as in Rockova and George (2014).

beta_init Vector (p x 1) of initial values for the regression parameters beta. If missing, a default vector of starting values obtained as a limiting case of deterministic annealing used

$$beta^0 = [X'X + 0.5(1/v1 + 1/v0)I_p]^{-1}X'Y.$$

sigma_init Initial value for the residual variance parameter.

epsilon Convergence margin parameter. The computation at each v0 is terminated when

$$||beta^{k+1} - beta^k||_2 < \epsilon.$$

temperature Temperature parameter for deterministic annealing. If missing, a default value temperature=1 used.

theta Prior inclusion probability for type="fixed".
a,b Scale parameters of the beta distribution for type="betabinomial".

v1_g Slab variance parameter value for the g-function. If missing, a default value v1 used.

direction Direction of the sequential reinitialization in dynamic posterior exploration. The default is direction="backward" - this initializes the first computation at beta_init using the largest value of v0 and uses the resulting output as a warm start for the next largest value v0 in a backward direction (i.e. from the largest to the smallest value of v0). The option direction="forward" proceeds from the smallest value of v0 to the largest value of v0, using the output from the previous solution as a warm start for the next. direction = "null" re-initializes at beta_init for each v0.

standardize If TRUE (default), the design matrix X is standardized (mean zero and variance n).

log_v0 If TRUE, the v0s are displayed on the log scale in EMVSplot.

Details

An EM algorithm is applied to find posterior modes of the regression parameters in linear models under spike and slab priors. Variable selection is performed by thresholding the posterior modes to obtain models gamma with high posterior probability P(gamma|Y). The spike variance v0 can be altered to obtain models with various degrees of sparsity. The slab variance is set to a fixed value v1>v0. The thresholding is based on the conditional posterior probabilities of inclusion, which are outputed of the procedure. Variables are included as long as their inclusion probability is above 0.5. Dynamic exploration is achieved by considering a sequence of increasing spike variance parameters v0. For each v0, a candidate model is obtained. For the conjugate prior case, the best model is then picked according to a criterion ("log g-function"), which equals to the log of the posterior model probability up to a constant

\[\log g(gamma) = \log P(gamma|Y) + C. \]

Independent and sequential initializations are implemented. Sequential initialization uses previously found modes as warm starts in both forward and backward direction of the given sequence of v0 values.

Value

A list object, for which EMVSplot and EMVSbest functions exist.

betas Matrix of estimated regression coefficients (posterior modal estimates) of dimension (L x p), where L is the length of v0.

log_g_function Vector (L x 1) of log posterior model probabilities (up to a constant) of subsets found for each v0. (Only available for independent = FALSE).

intersects Vector (L x 1) of posterior weighted intersection points between spike and slab components.

sigmas Vector (L x 1) of estimated residual variances.

v1 Slab variance parameter values used.

v0 Spike variance parameter values used.
niters Vector (L x 1) of numbers of iterations until convergence for each \(v_0 \)
prob_inclusion A matrix (L x p) of conditional inclusion probabilities. Each row corresponds to a single \(v_0 \) value.
type Type of the model prior used.
type Type of initialization used, \(\text{type} = \text{"null"} \) stands for the default cold start.
theta Vector (L x 1) of estimated inclusion probabilities for \(\text{type} = \text{"betabinomial"} \).

Author(s)
Veronika Rockova

References

See Also
EMVSplot, EMVSsummary, EMVSbest

Examples

```r
# Linear regression with p>n variables
library(EMVS)

n = 100
p = 1000
X = matrix(rnorm(n * p), n, p)
beta = c(1.5, 2, 2.5, rep(0, p-3))

# conjugate prior on regression coefficients and variance
v0 = seq(0.1, 2, length.out = 20)
v1 = 1000
beta_init = rep(1, p)
sigma_init = 1
epsilon = 10^{-5}
result = EMVS(Y, X, v0 = v0, v1 = v1, type = "betabinomial",
independent = FALSE, beta_init = beta_init, sigma_init = sigma_init,
epsilon = epsilon, a = a, b = b)
EMVSplot(result, "both", FALSE)
EMVSbest(result)

# independent prior on regression coefficients and variance
v0 = exp(seq(-10, -1, length.out = 20))
v1 = 1
beta_init = rep(1,p)
```
sigma_init = 1
a = b = 1
epsilon = 10^{-5}

result = EMVS(Y, X, vθ = vθ, v1 = v1, type = "betabinomial",
independent = TRUE, beta_init = beta_init, sigma_init = sigma_init,
epsilon = epsilon, a = a, b = b, log_vθ = TRUE)

EMVSplot(result, "both", FALSE)

EMVSbest(result)

EMVSbest Select the Best Model with EMVS

Description

EMVSbest outputs indices of the variables included in the model with the highest posterior probability found.

Usage

EMVSbest(result)

Arguments

result List object outputed by the EMVS procedure

Value

log_g_function The highest log-g-function found along the regularization path
indices The indices of the variables included in the best model found

Author(s)

Veronika Rockova

References

See Also

EMVS, EMVSSummary, EMVSplot
EMVSplot

Spike-and-slab Dynamic Posterior Exploration

Description

EMVSplot procedure plots the solution path of the estimated regression coefficients (posterior modes) for different v_0 values.

Usage

```
EMVSplot(result, plot_type=c("both","reg","gf"), omit.zeroes = FALSE)
```

Arguments

- **result**: List object outputed by the EMVS procedure
- **plot_type**: Plot type: "both" for plotting both the regularization path together with the associated log g function, "reg" only for the regularization plot, "gf" only for the log g function.
- **omit.zeroes**: Logical: TRUE or FALSE. If TRUE, only the selected coefficients are plotted, the remaining coefficients set to zero

Details

Coefficients that are not thresholded out are depicted in blue, the rest in red. Log g function computed only for models with at most 1 000 predictors.

Author(s)

Veronika Rockova

References

See Also

EMVS, EMVSsummary, EMVSbest
EMVSsummary

Select the Best Model with EMVS

Description

EMVSsummary outputs variable selection indicators of models found together with the log-g-function.

Usage

EMVSsummary(result)

Arguments

result

List object outputed by the EMVS procedure

Value

log_g_function

The log-g-function computed for all models found along the regularization path

indices

The (L x p) matrix of variable selection indicators after thresholding (1 for selected, 0 for not selected). Each row corresponds to a single v0 value.

Author(s)

Veronika Rockova

References

See Also

EMVS, EMVSplot, EMVSbest
Index

* Bayesian variable selection
 EMVS, 2
 EMVSbest, 5
 EMVSplot, 6
 EMVSSummary, 7

* Spike and slab
 EMVS, 2
 EMVSbest, 5
 EMVSplot, 6
 EMVSSummary, 7