Package ‘EPX’

July 6, 2021

Type Package

Title Ensemble of Phalanxes

Version 1.0.4

Maintainer Jabed Tomal <jtomal@tru.ca>

License GPL-3

Encoding UTF-8

LazyData TRUE

Depends R (>= 3.6.0), foreach, randomForest, doRNG

Imports nnet, doParallel, rngtools

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, testthat

VignetteBuilder knitr

NeedsCompilation yes

Author Jabed Tomal [aut, cre], Grace Hsu [aut], William Welch [aut], Marcia Wang [ctb]

Repository CRAN

Date/Publication 2021-07-06 21:50:07 UTC
R topics documented:

AHR.. 2
BNhold.. 3
BNsample... 4
cv.epx.. 4
epx... 6
harvest... 9
hit.curve... 9
IE.. 11
plot.epx... 12
predict.epx... 13
RKL.. 14
summary.epx....................................... 15
TOP1.. 16

Index .. 17

AHR

Calculate AHR (or expected AHR)

Description

Calculates average hitrate (AHR), which is equivalent to average precision. When there are ties in ranking (not all values in phat are unique), the result is the expectation of AHR. The algorithm that produces this analytic result assumes that the items in any tied group are in an arbitrary order within the group.

Usage

AHR(y, phat, ...)

Arguments

y True (binary) response vector where 1 is the rare/relevant class.
phat Numeric vector of estimated probabilities of relevance.
... Further arguments passed to or from other methods.

Details

Implementation adapted from Wang (2005, Chapter 3). Please also see Chapter 3 of Wang (2005) for AHR and expected AHR formulas.

Value

Numeric value of average hitrate; expected average hitrate when there are ties.
BNhold

References

Examples

```r
## AHR when there are no ties in phat:
resp <- c(1, 0, 0, 0, 1)
prob <- (1:5)*0.1
AHR(y = resp, phat = prob)
# expect answer: 1/2 * (1 + 0 + 0 + 0 + 2/5)

## (Expected) AHR when there are ties in phat:
resp <- c(1, 1, 0, 0, 0, 0, 0, 1, 0, 0)
prob <- c(1, 1, 0.4, 0.4, 0.3, 0.2, 0.15, 0.1, 0)
AHR(y = resp, phat = prob)
# expect answer: 1/3 * (2/3 + 1/2 * (1/3 + 2/3) + 1/3 * 4/3 +
# 1/8 * (2/3 + 2/3 + 2/3 + 1))
```

Description

AID348 hold-out data with 24 burden numbers as explanatory variables. Demonstrates in a timely manner `epx`, the phalanx-formation algorithm in `EPX` and associated functions `summary.epx`, `predict.epx`, `plot.epx`, `hit.curve`.

Usage

BNhold

Format

A dataframe with 3946 rows and 25 variables:

- **WBN** Burden numbers descriptor set with 24 variables.
- **y** The response variable where 1 denotes active and 0 inactive.

References

BNsample

AID348 sample (training) data with Burden Numbers for testing the EPX package

Description

AID348 sample (training) dataset with 24 burden numbers as explanatory variables. Demonstrates in a timely manner epx, the phalanx-formation algorithm in EPX and associated functions summary.epx, predict.epx, plot.epx, cv.epx, hit.curve.

Usage

BNsample

Format

A dataframe with 1000 rows and 25 variables:

WBN Burden numbers descriptor set with 24 variables.
y The response variable where 1 denotes active and 0 inactive.

References

cv.epx

Balanced K-fold cross-validation for an "epx" object

Description

Balanced K-fold cross-validation based on an "epx" object. Hence, we have biased cross-validation as we do not re-run the phalanx-formation algorithm for each fold.

Usage

cv.epx(
 expx,
 folds = NULL,
 K = 10,
 folds.out = FALSE,
 classifier.args = list(),
 performance.args = list(),
 ...
)

cv.epx

Arguments

epx Object of class "epx".
folds Optional vector specifying to which fold each observation belongs. Must be an
n-length vector (n being the number of observations) with integer values only in
the range from 1 to K.
K Number of folds; default is 10.
folds.out Indicates whether a vector indicating fold membership for each of the observa-
tions will be output; default is FALSE.
classifier.args Arguments for the base classifier specified by epx; default is that used in epx
formation.
performance.args Arguments for the performance measure specified by epx; default is that used in
epx formation.
... Further arguments passed to or from other methods.

Value

An (n + 1) by (p + 1) matrix, where n is the number of observations used to train epx and p is
the number of (final) phalanxes. Column p + 1 of the matrix contains the predicted probabilities of
relevance from the ensemble of phalanxes, and row n + 1 is the performance (choice of performance
measure determined by the "epx" object) of the corresponding column.

Setting folds.out as TRUE changes the output of cv.epx into a list of two elements:

EPX.CV The (n + 1) by (p + 1) matrix returned by default when folds.out = FALSE.
FOLDS.USED A vector of length n with integer values only in the range from 1 to K indicating
to which fold each observation was randomly assigned for cross-validation.

Examples

Example with data(harvest)

Phalanx-formation using a base classifier with 50 trees (default = 500)

set.seed(761)
model <- epx(x = harvest[, -4], y = harvest[, 4],
 classifier.args = list(ntree = 50))

10-fold balanced cross-validation (different base classifier settings)
Not run:
set.seed(761)
cv.100 <- cv.epx(model, classifier.args = list(ntree = 100))
tail(cv.100) # see performance (here, AHR) for all phalanxes and the ensemble

Option to output the vector assigning observations to the K folds
(Commented out for speed.)
set.seed(761)
cv.folds <- cv.epx(model, folds.out = TRUE)
tail(cv.folds[[1]]) # same as first example
table(cv.folds[[2]]) # number of observations in each of the 10 folds

10 runs of 10-fold balanced cross-validation (using default settings)
set.seed(761)
cv.ahr <- NULL # store AHR of each ensemble
for (i in 1:10) {
 cv.i <- cv.epx(model)
 cv.ahr <- c(cv.ahr, cv.i[nrow(cv.i), ncol(cv.i)])
}
boxplot(cv.ahr) # to see variation in AHR

End(Not run)

Description

epx forms phalanxes of variables from training data for binary classification with a rare class. The phalanxes are disjoint subsets of variables, each of which is fit with a base classifier. Together they form an ensemble.

Usage

```r
epx(
  x,
  y,
  phalanxes.initial = c(1:ncol(x)),
  alpha = 0.95,
  nsim = 1000,
  rmin.target = 1,
  classifier = "random forest",
  classifier.args = list(),
  performance = "AHR",
  performance.args = list(),
  computing = "sequential",
  ...
)
```

Arguments

- **x**
 Explanatory variables (predictors, features) contained in a data frame.

- **y**
 Binary response variable vector (numeric or integer): 1 for the rare class, 0 for the majority class.
epx

phalanxes.initial
Initial variable group indices; default one group per variable. Example: vector c(1, 1, 2, 2, 3, ...) puts variables 1 and 2 in group 1, variables 3 and 4 in group, 2, etc. Indices cannot be skipped, e.g., c(1, 3, 3, 4, 4, 3, 1) skips group 2 and is invalid.

alpha
Lower-tail probability for the critical quantile of the reference distribution of the performance measure for a classifier that ranks at random (i.e., the predictors have no explanatory power); default is 0.95.

nsim
Number of simulations for the reference empirical distribution of the performance measure; default is 1000.

rmin.target
To merge the pair of groups with the minimum ratio of performance measures (ensemble of models to single model) into a single group their ratio must be less than rmin.target, otherwise merging stops; default is 1.

classifier
Base classifier, one of c("random forest", "logistic regression", "neural network"); default is "random forest", which uses randomForest.

classifier.args
Arguments for the base classifier specified in a list as follows: list(argName1 = value1, argName2 = value2, ...). If the list is empty, the classifier will use its defaults. For "random forest", user may specify replace, cutoff, nodesize, maxnodes. For "logistic regression" there are no options. For "neural network", user may specify size, trace.

performance
Performance assessment metric, one of c("AHR", "IE", "TOP1", "RKL"); default is AHR.

performance.args
Arguments for the performance measure specified in a list as follows: list(argName1 = value1, argName2 = value2, ...). If the list is empty, the performance measure will use its defaults. Currently, only IE takes an argument list, and its only argument is cutoff.

computing
Whether to compute sequentially or in parallel. Input is one of c("sequential", "parallel"); default is "sequential".

... Further arguments passed to or from other methods.

Details
Please see Tomal et al. (2015) for more description of phalanx formation.

Value
Returns an object of class epx, which is a list containing the following components:

PHALANXES
List of four vectors, each the same length as the number of explanatory variables (columns in x): phalanxes.initial, phalanxes.filtered, phalanxes.merged, phalanxes.final. Each vector contains the phalanx membership indices of all explanatory variables at one of the four stages of phalanx-formation. Element i of a vector is the index of the phalanx to which variable i belongs. Phalanx 0 does not exist and so membership in phalanx 0 indicates that the variable does not belong to any phalanx; it has been screened out.
PHALANXES.FINAL.PERFORMANCE
Vector of performance measures of the final phalanxes: the first element is for phalanx 1, etc.

PHALANXES.FINAL.FITS
A matrix with number of rows equal to the number of observations in the training data and number of columns equal to the number of final phalanxes. Column i contains the predicted probabilities of class 1 from fitting the base classifier to the variables in phalanx i.

ENSEMBLED.FITS The predicted probabilities of class 1 from the ensemble of phalanxes based on phalanxes.final.

BASE.CLASSIFIER.ARGS
(Parsed) record of user-specified arguments for classifier.

PERFORMANCE.ARGS
(Parsed) record of user-specified arguments for performance.

X User-provided data frame of explanatory variables.

Y User-provided binary response vector.

References

See Also

summary.epx prints a summary of the results, and cv.epx assesses performance via cross-validation.

Examples

Example with data(harvest)
Phalanx-formation using a base classifier with 50 trees (default = 500)
set.seed(761)
model <- epx(x = harvest[, -4], y = harvest[, 4],
 classifier.args = list(ntree = 50))

Phalanx-membership of explanatory variables at the four stages
of phalanx formation (0 means not in a phalanx)
model$PHALANXES

Summary of the final phalanxes (matches above)
summary(model)

Not run:
Parallel computing
clusters <- parallel::detectCores()
cl <- parallel::makeCluster(clusters)
doParallel::registerDoParallel(cl)
set.seed(761)
model.par <- epx(x = harvest[, -4], y = harvest[, 4],
 classifier.args = list(ntree = 50))
harvest

```r
parallel::stopCluster(cl)
## End(Not run)
```

harvest

Simulated dataset for testing the EPX package

Description

A simulated dataset from Yuan et al. (2012) with three explanatory variables. Demonstrates in a timely manner `epx`, the phalanx-formation algorithm in `EPX` and associated functions `summary.epx`, `predict.epx`, `plot.epx`, `cv.epx`, `hit.curve`.

Usage

`harvest`

Format

A dataframe with 190 rows and 4 variables:

- **LogP** Octanol/water partition coefficient (-2 to 7).
- **MeltPt** Melting point (120 to 280 degrees Celsius).
- **MolWt** Molecular weight (200 to 800).
- **y** The response variable where 1 denotes active and 0 inactive.

References

hit.curve

Plot hit curve

Description

Plots the hit curve corresponding to `phat` and `y`.

Usage

`hit.curve(y, phat, max.cutoff = min(100, length(y)), plot hc = T, ...)`
hit.curve

Arguments

- **y**: True binary response vector where 1 denotes the relevant rare class.
- **phat**: Vector of estimated probabilities of relevance.
- **max.cutoff**: Maximum number of observations selected, equivalently the maximum shortlist cutoff; default is \(\min(100, \text{length}(y)) \).
- **plot.hc**: Whether to return a plot of the hit curve; default is `TRUE`.
- **...**: Further arguments passed to or from other methods.

Details

Order the cases by decreasing `phat` (predicted probabilities of relevance) values, and plot the expected number and actual number of hits as cases are selected. Cases with tied `phat` values are grouped together. See `plot.epx` for plotting the hit curve for an "epx" object.

Value

Plot of the hit curve (if `plot.hc = TRUE`) and a list with the following vectors:

- **select**: Number of observations in each tied `phat` group; `select[1], select[2], ...` are the numbers of observations with the largest predicted probability of relevance \(\max(\text{phat}) \), the second largest value in `phat`, etc.
- **p**: Unique `phat` values; `p[1], p[2], ...` are the largest value in `phat`, the second largest value in `phat`, etc.
- **nhits**: Number of hits (truly relevant observations) in each tied `phat` group.
- **nhitlast**: Number of hits after `max.cutoff` observations selected.

Examples

```r
# Example with data(harvest)

## Phalanx-formation using a base classifier with 50 trees (default = 500)
set.seed(761)
model <- epx(x = harvest[, -4], y = harvest[, 4],
             classifier.args = list(ntree = 50))

## Plot hit curve for cross-validated predicted probabilities of relevance
set.seed(761)
model.cv <- cv.epx(model)
preds.cv <- model.cv[-nrow(model.cv), ncol(model.cv)]
cv.hc <- hit.curve(phat = as.numeric(preds.cv), y = model$Y)
```

Calculate Initial Enhancement

Description
Calculates initial enhancement (IE), which is the precision at one specific shortlist length (cutoff) normalised by the proportion of relevants in the total sample size (Tomal et al. 2015). Since IE is a rescaling of precision, we expect IE and AHR to lead to similar conclusions as an assessment metric for the EPX algorithm.

Usage

IE(y, phat, cutoff = length(y)/2, ...)

Arguments
- **y**: True (binary) response vector where 1 is the rare/relevant class.
- **phat**: Numeric vector of estimated probabilities of relevance.
- **cutoff**: Shortlist cutoff length, and so must not exceed length of y; default is half the sample size.
- **...**: Further arguments passed to or from other methods.

Details
Let \(c \) be the cutoff and \(h(c) \) be the hitrate at \(c \). Let also \(A \) be the total number of relevants and \(N \) be the total number of observations. IE is defined as

\[
IE = h(c) / (A/N)
\]

IE calculation does not change whether there are ties in phat or not.

Value
Numeric value of IE.

References

Examples

```r
## IE when there are no ties in phat:

resp <- c(1, 1, 0, 0, 0, 0, 0, 1, 0, 0)
prob <- (10:1) * 0.1
IE(y = resp, phat = prob, cutoff = 3)
```
expect answer: (2/3) / (3/10)

IE when there are ties
resp <- c(1, 1, 0, 0, 0, 0, 0, 1, 0, 0)
prob <- c(1, 1, 1, 0.4, 0.4, 0.3, 0.2, 0.15, 0.1, 0)
IE(y = resp, phat = prob, cutoff = 3)

expect answer: same as above

plot.epx
Plot hit curve for an "epx" object

Description

Plots the hit curve for the fitted values of an "epx" object.

Usage

```r
## S3 method for class 'epx'
plot(x, max.cutoff = min(100, length(x$Y)), plot.hc = TRUE, ...)
```

Arguments

- `x` Object of class "epx".
- `max.cutoff` Maximum number of observations selected, equivalently the maximum shortlist cutoff; default is `min(100, length(x$Y))`.
- `plot.hc` Whether to make a plot of the hit curve; default is `TRUE`.
- `...` Further arguments passed to or from other methods.

Details

Order the cases by decreasing `phat` (predicted probabilities of relevance) values, and plot the expected number and actual number of hits as cases are selected. Cases with tied `phat` values are grouped together. See `hit.curve` in order to plot a hit curve in general.

Value

Plot of the hit curve (if `plot.hc = TRUE`) and a list with the following vectors:

- `select` Number of observations in each tied `phat` group; `select[1], select[2], ...` are the numbers of observations with the largest predicted probability of relevance (max(`phat`)), the second largest value in `phat`, etc.
- `p` Unique `phat` values; `p[1], p[2], ...` are the largest value in `phat`, the second largest value in `phat`, etc.
- `nhits` Number of hits (truly relevant observations) in each tied `phat` group.
- `nhitlast` Number of hits after `max.cutoff` observations selected.
Examples

Example with data(harvest)
Phalanx-formation using a base classifier with 50 trees (default = 500)
set.seed(761)
model <- epx(x = harvest[, -4], y = harvest[, 4],
 classifier.args = list(ntree = 50))
Hit curve for model with default settings
model.hc <- plot(model)
In the top 100 ranked observations selected, the number that are truly
relevant is
model.hc$nhitlast
Hit curve with max.cutoff at 150 (Note: Commented off for time.)
model.hc.150 <- plot(model, max.cutoff = 150)
model.hc.150$nhitlast # Number of hits in top 150 ranked observations.

predict.epx

Predict with an "epx" object

Description

Predicted values based on an "epx" object; may specify different base classifier arguments than
those used for phalanx-formation.

Usage

S3 method for class 'epx'
predict(object, newdata, classifier.args = list(), ...)

Arguments

object
newdata
classifier.args

Object of class "epx".
An optional data frame specifying variables with which to predict; if omitted
and classifier.args are not specified, the fitted (ensmbled) values are used.
Additional arguments for the base classifier; same base classifier as that used for
phalanx-formation (specified in epx).

Value

Numeric vector of predicted values (double).
Examples

Example with data(harvest)

Phalanx-formation using a base classifier with 50 trees (default = 500)

set.seed(761)
model <- epx(x = harvest[, -4], y = harvest[, 4],
 classifier.args = list(ntree = 50))

Predict training values without additional classifier.args and newdata
returns the object's ENSEMBLED.FITS
all.equal(predict(model), model$ENSEMBLED.FITS)

Predict training values using 100 trees (default = 500)
set.seed(761)
preds100 <- predict(model, classifier.args = list(ntree = 100))

Predict test values by passing dataframe of test predictors to newdata as
with the predict(model, newdata = .) function etc.

RKL Calculate rank last

Description

The peformance measure rank last (RKL) is calculated as follows: after ranking the observations in decreasing order via \(\hat{p} \), RKL is the rank of the last truly relevant observation. Hence, RKL can take on integer values from 1 to \(n \), where \(n \) is the total number of observations. If there are ties, the last object in the tied group determines RKL. That is, if all \(n \) objects are tied at the first rank but only one object is truly relevant, RKL will have a value of \(n \).

Usage

\[
\text{RKL}(y, \hat{p}, \ldots)
\]

Arguments

- \(y \) True (binary) response vector where 1 is the rare/relevant class.
- \(\hat{p} \) Numeric vector of estimated probabilities of relevance.
- \(\ldots \) Further arguments passed to or from other methods.

Value

Numeric value of RKL.
summary.epx

Summarying an "epx" object

Description

summary method for class "epx".

Usage

S3 method for class 'epx'
summary(object, ...)

Arguments

object Object of class "epx" returned by epx.

... Further arguments passed to or from other methods.

Value

Prints a summary of the object returned by the phalanx-formation algorithm epx.

Examples

Example with data(harvest)

Phalanx-formation using a base classifier with 50 trees (default = 500)

set.seed(761)
model <- epx(x = harvest[, -4], y = harvest[, 4],
 classifier.args = list(ntree = 50))
summary(model)
The summary agrees with
(model$PHALANXES)[[4]]

TOP1

Calculate TOP1

Description

The performance measure TOP1 is calculated as follows: after sorting the observations by their predicted probabilities of relevance (\(\text{phat}\)) in decreasing order so the first ranked observation has the highest probability of relevance, if the first ranked observation is truly relevant, TOP1 has a value of 1. Otherwise TOP1 is 0. If there are ties for the first rank, all the corresponding observations must be truly relevant for TOP1 to score 1.

Usage

\[
\text{TOP1}(y, \text{phat}, \ldots)
\]

Arguments

- **y**: True (binary) response vector where 1 is the rare/relevant class.
- **phat**: Numeric vector of estimated probabilities of relevance.
- **...**: Further arguments passed to or from other methods.

Value

Numeric value of TOP1.

Examples

```r
## with ties in phat
resp <- c(0, rep(1, 99))
prob <- rep(1, 100)
TOP1(y = resp, phat = prob) # expect 0

resp <- c(1, 1, 1, rep(0, 95), 1, 1)
prob <- c(1, 1, 1, rep(0, 97))
TOP1(y = resp, phat = prob) # expect 1

## no ties in phat
resp <- c(0, rep(1, 99))
prob <- (100:1)*0.01
TOP1(y = resp, phat = prob) # expect 0

resp <- c(1, rep(0, 99))
TOP1(y = resp, phat = prob) # expect 1
```
Index

* datasets
 BNhold, 3
 BNsample, 4
 harvest, 9

AHR, 2, 7

BNhold, 3
BNsample, 4

cv.epx, 4, 4, 8, 9
epx, 3–5, 6, 9, 10, 12, 13, 15

harvest, 9
hit.curve, 3, 4, 9, 9, 12

IE, 7, 11

plot.epx, 3, 4, 9, 10, 12
predict.epx, 3, 4, 9, 13

randomForest, 7
RKL, 7, 14

summary.epx, 3, 4, 8, 9, 15

TOP1, 7, 16