Package ‘EstimDiagnostics’

April 16, 2021

Type Package

Title Diagnostic Tools and Unit Tests for Statistical Estimators

Version 0.0.3

Author Dmitry Otryakhin [aut, cre] (<https://orcid.org/0000-0002-4700-7221>)

Maintainer Dmitry Otryakhin <d.otryakhin.acad@protonmail.ch>

Description Extension of 'testthat' package to make unit tests on empirical distributions of estimators and functions for diagnostics of their finite-sample performance.

License GPL-3

Encoding UTF-8

Imports foreach (>= 1.5.1), reshape2 (>= 1.4.4), ggplot2 (>= 3.3.2), goftest (>= 1.2-2), testthat (>= 3.0.0), rlang

RoxygenNote 7.1.1

Suggests knitr, rmarkdown, doParallel, gridExtra

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2021-04-16 21:40:03 UTC

R topics documented:

estims_boxplot .. 2
estims qqplot .. 2
Estim_diagnost .. 3
expect distfit .. 4
expect gaussian .. 5
expect mean equal .. 6

Index 8
estims_boxplot

Boxplot of estimates

Description
Plot boxplots of estimators for different sample sizes.

Usage
estims_boxplot(data, sep = FALSE)

Arguments
- **data**
 data frame returned by `Estim_diagnost`
- **sep**
 indicates whether all plots will be stacked together or returned as elements of a list

Value
ggplot2 object

Examples
Nmc=400
s<-seq(from = 1, to = 10, by = 2)*1e3
Inference<-function(s){
 rrr<-rnorm(n=s)
 list(Mn=mean(rrr), Sd=sd(rrr))
}
data <- Estim_diagnost(Nmc, s, Inference)
estims_boxplot(data)
estims_boxplot(data, sep=TRUE)

estims_qqplot

QQ-plot of estimator empirical distributions

Description
Plot QQ-plots of estimators' empirical distributions for different sample sizes.

Usage
estims_qqplot(data, sep = FALSE, ...)

Examples
Nmc=400
s<-seq(from = 1, to = 10, by = 2)*1e3
Inference<-function(s){
 rrr<-rnorm(n=s)
 list(Mn=mean(rrr), Sd=sd(rrr))
}
data <- Estim_diagnost(Nmc, s, Inference)
estims_qqplot(data)
estims_qqplot(data, sep=TRUE, ...)

estims_qqplot

QQ-plot of estimator empirical distributions

Description
Plot QQ-plots of estimators' empirical distributions for different sample sizes.

Usage
estims_qqplot(data, sep = FALSE, ...)

Examples
Nmc=400
s<-seq(from = 1, to = 10, by = 2)*1e3
Inference<-function(s){
 rrr<-rnorm(n=s)
 list(Mn=mean(rrr), Sd=sd(rrr))
}
data <- Estim_diagnost(Nmc, s, Inference)
estims_qqplot(data)
estims_qqplot(data, sep=TRUE, ...)
Arguments

- **data**: data frame returned by `Estim_diagnost`.
- **sep**: indicates whether all plots will be stacked together or returned as elements of a list.
- **...**: parameters to pass to `stat_qq` function.

Value

ggplot2 object.

Examples

```r
library(ggplot2)
Nmc=500
s<-c(1e3,4e3)

Inference<-function(s){
  rrr<-rnorm(n=s)
  list(Mn=mean(rrr), Sd=sd(rrr))
}

data <- Estim_diagnost(Nmc, s, Inference)
lisst <- estims_qqplot(data, sep=TRUE)
lisst[[2]][[1]] + geom_abline(intercept = 1)

pl_joint<-estims_qqplot(data)
pl_joint + geom_abline(slope=1)

pl_joint<-estims_qqplot(data, distribution = stats::qt, dparams = list(df=3, ncp=0.1))
pl_joint + geom_abline(slope=1)
```

Estim_diagnost
Sample estimators’ values for different sample sizes

Description

For every sample size value the function creates a sample and evaluates the estimators Nmc times.

Usage

`Estim_diagnost(Nmc, s, Inference, packages = NULL)`

Arguments

- **Nmc**: number of repetitions.
- **s**: numeric vector of sample sizes.
- **Inference**: function of `s` creating a sample and evaluating estimators (see details).
- **packages**: list of packages to pass to `foreach` loop.
Value

data frame with estimators’ values

Examples

Nmc=400
s<-c(1e2,1e3)

Inference<-function(s){
 rrr<-rnorm(n=s)
 list(Mn=mean(rrr), Sd=sd(rrr))
}
data <- Estim_diagnost(Nmc, s, Inference)
estims_qqplot(data)
estims_boxplot(data)

#
Inference<-function(s){
rrr<-2/0
list(Mn=mean(rrr), Sd=sd(rrr))
#}
head(Estim_diagnost(Nmc, s, Inference))

#
Inference<-function(s){
rrr<-rnorm(n=s)
rrr[2]<"dwq"
list(Mn=mean(rrr), Sd=sd(rrr))
#}
head(Estim_diagnost(Nmc, s, Inference))

expect_distfit Test a parametric distribution

Description

Expectation checking whether a given sample comes from a certain parametric distribution. The underlying procedure is Anderson-Darling test of goodness-of-fit ad.test. The expectation throws an error when the test’s p-value is smaller than the threshold p-value.

Usage

expect_distfit(sample, p_value = 0.001, nulldist, ...)

```r
Nmc=400
s<-c(1e2,1e3)

Inference<-function(s){
  rrr<-rnorm(n=s)
  list(Mn=mean(rrr), Sd=sd(rrr))
}
data <- Estim_diagnost(Nmc, s, Inference)
estims_qqplot(data)
estims_boxplot(data)

# Inference<-function(s){
#  rrr<-2/0
#  list(Mn=mean(rrr), Sd=sd(rrr))
#}
head(Estim_diagnost(Nmc, s, Inference))

# Inference<-function(s){
#  rrr<-rnorm(n=s)
#  rrr[2]<"dwq"
#  list(Mn=mean(rrr), Sd=sd(rrr))
#}
head(Estim_diagnost(Nmc, s, Inference))
```
expect_gaussian

Arguments

- **sample** to test
- **p_value** threshold p-value of the test
- **nulldist** null distribution
- **...** parameters to pass to the null distribution

Value

Invisibly returns a p-value of the test.

Examples

```
# Gaussianity test
## Not run:
x<-rnorm(n=1e4,5,6)
expect_distfit(sample=x, nulldist="pnorm", mean=5, sd=6.3)
expec期望_distfit(sample=x, nulldist="pnorm", mean=5, sd=6)
## End(Not run)

# Uniformity test
x<-runif(n=1e4,-1,6)
expect_distfit(sample=x, nulldist="punif", min=-1, max=6)
```

expect_gaussian Test a Gaussian distribution

Description

Expectation checking whether a given sample comes from Gaussian distribution with arbitrary parameters. The underlying procedure is Shapiro- Wilk’s test of normality `shapiro.test`. The expectation throws an error when the test’s p-value is smaller than the threshold p-value.

Usage

```
expect_gaussian(sample, p_value = 0.001)
```

Arguments

- **sample** to test
- **p_value** threshold p-value of the test

Details

`shapiro.test` allows the number of non-missing values to be between 3 and 5000.
Value

Invisibly returns a p-value of the test.

Examples

```r
x <- rnorm(n = 1e3, 5, 6)
expect_gaussian(sample = x)

# The following test doesn't pass
## Not run:
x <- runif(n = 1e2, -1, 6)
expect_gaussian(sample = x)

## End(Not run)
```

expect_mean_equal
Test a mean-value using t-test

Description

Expectation checking whether values from a given sample have a certain mean or that two samples have the same mean. The underlying procedure is Student’s t-test \(t.test \). The expectation throws an error when the test’s p-value is smaller than the threshold p-value.

Usage

```r
expect_mean_equal(p_value = 0.001, ...)
```

Arguments

- `p_value`: threshold p-value of the test
- `...`: parameters to pass to \(t.test \) function including data sample(s)

Value

Invisibly returns a p-value of the test

Examples

```r
# This test doesn't pass
## Not run:
x <- 1:1e3
expect_mean_equal(x = x)

## End(Not run)

# This one passes, but shouldn't
```
```r
x <- rnorm(1e3) + 0.01
expect_mean_equal(x = x)

x <- rnorm(1e3)
expect_mean_equal(x = x)

# check if 2 samples have the same mean
x <- rnorm(1e3, mean = 10)
y <- rnorm(1e3, mean = 10)
expect_mean_equal(x = x, y = y)
```
Index

ad.test, 4

Estim_diagnost, 2, 3, 3
estims_boxplot, 2
estims_qqplot, 2
expect_distfit, 4
expect_gaussian, 5
expect_mean_equal, 6

shapiro.test, 5

t.test, 6