Package ‘FastBandChol’

August 26, 2015

Type Package

Title Fast Estimation of a Covariance Matrix by Banding the Cholesky Factor

Version 0.1.1

Author Aaron Molstad <molst029@umn.edu>

Maintainer Aaron Molstad <molst029@umn.edu>

License GPL-2

LazyData TRUE

Imports Rcpp

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Repository CRAN

Date/Publication 2015-08-26 16:44:04

R topics documented:

FastBandChol-package .. 2
banded.chol .. 3
banded.chol.cv .. 4
banded.sample ... 5
banded.sample.cv ... 6

Index 8
FastBandChol-package

Fast estimation of covariance matrix by banded Cholesky factor

Description

Fast and numerically stable estimation of covariance matrix by banding the Cholesky factor using a modified Gram-Schmidt algorithm implemented in RcppArmadillo. See <https://stat.umn.edu/~molst029> for details on the algorithm.

Details

<table>
<thead>
<tr>
<th>Package:</th>
<th>FastBandChol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type:</td>
<td>Package</td>
</tr>
<tr>
<td>Version:</td>
<td>0.1.0</td>
</tr>
<tr>
<td>Date:</td>
<td>2015-08-22</td>
</tr>
<tr>
<td>License:</td>
<td>GPL-2</td>
</tr>
</tbody>
</table>

Author(s)

Aaron Molstad

References

Examples

```r
## set sample size and dimension
n = 20
p = 100

## create covariance with AR1 structure
Sigma = matrix(0L, nrow=p, ncol=p)
for(l in 1:p){
  for(m in 1:p){
    Sigma[l,m] = .5^abs(l-m)
  }
}

## simulation Normal data
e1 = eigen(Sigma)
Sigma.sqrt = e1$vec%*%diag(e1$val^.5)%*%t(e1$vec)
X = t(Sigma.sqrt%*%matrix(rnorm(n*p), nrow=p, ncol=n))
```
banded.chol

```r
## compute estimates
est.sample = banded.sample(X, bandwidth=4)$est
est.chol = banded.chol(X, bandwidth=4)$est
```

Description

Computes estimate of covariance matrix by banding the Cholesky factor using a modified Gram Schmidt algorithm implemented in RcppArmadillo.

Usage

```r
banded.chol(X, bandwidth, centered = FALSE)
```

Arguments

- `X` A data matrix with `n` rows and `p` columns. Rows are assumed to be independent realizations from a `p`-variate distribution with covariance `\(\Sigma \).
- `bandwidth` A positive integer. Must be less than `n - 1` and `p - 1`.
- `centered` Logical. Is data matrix centered? Default is `centered = FALSE`.

Value

A list with

- `est` The estimated covariance matrix.

Examples

```r
## set sample size and dimension
n=20
p=100

## create covariance with AR1 structure
Sigma = matrix(0, nrow=p, ncol=p)
for(l in 1:p){
  for(m in 1:p){
    Sigma[l,m] = .5*abs(l-m)
  }
}

## simulation Normal data
eo1 = eigen(Sigma)
Sigma.sqrt = eo1$vec*$diag(eo1$val^*.5)*t(eo1$vec)
```
X = t(Sigma.sqrt%sim%matrix(rnorm(n*p), nrow=p, ncol=n))

compute estimate
out1 = banded.chol(X, bandwidth=4)

banded.chol.cv

Selects bandwidth for Cholesky factorization by cross validation

Description

Selects bandwidth for Cholesky factorization by k-fold cross validation

Usage

banded.chol.cv(X, bandwidth, folds = 3, est.eval = TRUE, Frob = TRUE)

Arguments

- **X**
 A data matrix with \(n \) rows and \(p \) columns. Rows are assumed to be independent realizations from a \(p \)-variate distribution with covariance \(\Sigma \).

- **bandwidth**
 A vector of candidate bandwidths. Candidate bandwidths can only positive integers such that the maximum is less than the sample size outside of the \(k \)th fold.

- **folds**
 The number of folds used for cross validation. Default is \(\text{folds} = 3 \).

- **est.eval**
 Logical: \(\text{est.eval} = \text{TRUE} \) returns a list with both the selected bandwidth and the estimated covariance matrix. \(\text{est.eval} = \text{FALSE} \) returns a list with only the selected bandwidth. The default is \(\text{est.eval} = \text{TRUE} \).

- **Frob**
 Logical: \(\text{Frob} = \text{TRUE} \) uses squared Frobenius norm loss for cross-validation. \(\text{Frob} = \text{FALSE} \) uses operator norm loss. Default is \(\text{Frob} = \text{TRUE} \).

Value

a list with

- **bandwidth.min**
 The bandwidth minimizing cross-validation error.

- **est**
 The estimated covariance matrix computed with \(\text{bandwidth} = \text{bandwidth.min} \).

Examples

set sample size and dimension
n=20
p=100

create covariance with AR1 structure
Sigma = matrix(0, nrow=p, ncol=p)
for(l in 1:p){
 for(m in 1:p){

Description

Selects bandwidth for Cholesky factorization by k-fold cross validation

Usage

banded.chol.cv(X, bandwidth, folds = 3, est.eval = TRUE, Frob = TRUE)

Arguments

- **X**
 A data matrix with \(n \) rows and \(p \) columns. Rows are assumed to be independent realizations from a \(p \)-variate distribution with covariance \(\Sigma \).

- **bandwidth**
 A vector of candidate bandwidths. Candidate bandwidths can only positive integers such that the maximum is less than the sample size outside of the \(k \)th fold.

- **folds**
 The number of folds used for cross validation. Default is \(\text{folds} = 3 \).

- **est.eval**
 Logical: \(\text{est.eval} = \text{TRUE} \) returns a list with both the selected bandwidth and the estimated covariance matrix. \(\text{est.eval} = \text{FALSE} \) returns a list with only the selected bandwidth. The default is \(\text{est.eval} = \text{TRUE} \).

- **Frob**
 Logical: \(\text{Frob} = \text{TRUE} \) uses squared Frobenius norm loss for cross-validation. \(\text{Frob} = \text{FALSE} \) uses operator norm loss. Default is \(\text{Frob} = \text{TRUE} \).

Value

a list with

- **bandwidth.min**
 The bandwidth minimizing cross-validation error.

- **est**
 The estimated covariance matrix computed with \(\text{bandwidth} = \text{bandwidth.min} \).

Examples

set sample size and dimension
n=20
p=100

create covariance with AR1 structure
Sigma = matrix(0, nrow=p, ncol=p)
for(l in 1:p){
 for(m in 1:p){

banded.sample

\[
\Sigma_{l,m} = .5^{\text{abs}(l-m)}
\]

simulation Normal data

```r
e01 = eigen(Sigma)
Sigma.sqrt = e01$vec%*%diag(e01$val^.5)%*%t(e01$vec)
X = t(Sigma.sqrt%*%matrix(rnorm(n*p), nrow=p, ncol=n))
```

perform cross validation

```r
k = 4:7
out1.cv = banded.chol.cv(X, bandwidth=k, folds = 5)
```

banded.sample

Computes banded sample covariance matrix

Description

Estimates a covariance matrix by banding the sample covariance matrix

Usage

```r
banded.sample(X, bandwidth, centered = FALSE)
```

Arguments

- **X**: A data matrix with \(n\) rows and \(p\) columns. Rows are assumed to be independent realizations from a \(p\)-variate distribution with covariance \(\Sigma\).
- **bandwidth**: A positive integer. Must be less than \(p - 1\).
- **centered**: Logical. Is data matrix centered? Default is centered = FALSE

Value

A list with

- **est**: The estimated covariance matrix.

Examples

```r
## set sample size and dimension
n=20
p=100

## create covariance with AR1 structure
Sigma = matrix(0, nrow=p, ncol=p)
for(l in 1:p){
  for(m in 1:p){
    Sigma[l,m] = .5^{\text{abs}(l-m)}
  }
}
```
banded.sample.cv

Selects bandwidth for sample covariance matrix by cross validation

Description

Selects bandwidth for sample covariance matrix by k-fold cross validation.

Usage

```r
banded.sample.cv(X, bandwidth, folds = 3, est.eval = TRUE, Frob = TRUE)
```

Arguments

- **X**: A data matrix with \(n \) rows and \(p \) columns. Rows are assumed to be independent realizations from a \(p \)-variate distribution with covariance \(\Sigma \).
- **bandwidth**: A vector of candidate bandwidths. Candidate bandwidths can only positive integers such that the maximum is less than \(p - 1 \).
- **folds**: The number of folds used for cross validation. Default is \(\text{folds} = 3 \).
- **est.eval**: Logical: \(\text{est.eval} = \text{TRUE} \) returns a list with both the selected bandwidth and the estimated covariance matrix. \(\text{est.eval} = \text{FALSE} \) returns a list with only the selected bandwidth. The default is \(\text{est.eval} = \text{TRUE} \).
- **Frob**: Logical: \(\text{Frob} = \text{TRUE} \) uses squared Frobenius norm loss for cross-validation. \(\text{Frob} = \text{FALSE} \) uses operator norm loss. Default is \(\text{Frob} = \text{TRUE} \).

Value

A list with:

- **bandwidth.min**: the bandwidth minimizing cv error
- **est**: the sample covariance matrix at bandwidth.min
Examples

```r
## set sample size and dimension
n=20
p=100

## create covariance with AR1 structure
Sigma = matrix(0, nrow=n, ncol=p)
for(l in 1:p){
  for(m in 1:p){
    Sigma[l,m] = .5^(abs(l-m))
  }
}

## simulation Normal data
eo1 = eigen(Sigma)
Sigma.sqrt = eo1$vec%*%diag(eo1$val^.5)%*%t(eo1$vec)
X = t(Sigma.sqrt%*%matrix(rnorm(n*p), nrow=p, ncol=n))

## perform cross validation
k = 4:7
out2.cv = banded.sample.cv(X, bandwidth=k, folds=5)
```
Index

banded.chol, 3
banded.chol.cv, 4
banded.sample, 5
banded.sample.cv, 6

FastBandChol (FastBandChol-package), 2
FastBandChol-package, 2