Package ‘GEEaSPU’

August 4, 2016

Type Package

Title Adaptive Association Tests for Multiple Phenotypes using Generalized Estimating Equations (GEE)

Version 1.0.2

Date 2016-08-03

Author Junghi Kim and Wei Pan

Maintainer Junghi Kim <junghikim0@gmail.com>

Description Provides adaptive association tests for SNP level, gene level and pathway level analyses.

License GNU General Public License (>= 3)

Depends R (>= 2.10), gee, stats

Imports Rcpp (>= 0.12.6)

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 5.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-08-04 11:47:48

R topics documented:

GEEaSPU-package ... 2
GEEaSPU ... 2
GEEaSPUpath ... 4
GEEaSPUset ... 7

Index 10
Description

Provides adaptive association tests for SNP level, gene level and pathway level analyses.

Details

Functions for adaptive association tests including GEEaSPU, GEEaSPUset and GEEaSPUpath. These methods use a weighting scheme for testing associations with multiple phenotypes. GEEaSPU function computes a SNP level p value; GEEaSPUset function can be used for the SNP-set (gene) level association test, while GEEaSPUpath function is for the gene-set (pathway) level analysis.

Author(s)

Junghi Kim and Wei Pan

References

Description

Tests whether a SNP is associated with multivariate outcomes; provides a series of p-values of GEE-SPU(pow) and GEE-aSPU tests.

Usage

GEEaSPU(pheno, geno, Z = NULL, model = "gaussian", corstr = "independence",
 pow = c(1, Inf), n.perm = 1000, null.type = "perm", score.test = FALSE)
Arguments

- **pheno**: a numeric phenotype matrix with each row as a different individual and each column as a separate phenotype.
- **geno**: a numeric vector with each element for an individual genotype.
- **Z**: a numeric covariate matrix with each row as a different individual and each column as a covaried to be adjusted.
- **model**: a character string specifying the model of the phenotypes. Models supported are "gaussian" for a quantitative trait and "binomial" for a binary trait (default = "gaussian").
- **corstr**: a character string specifying the correlation structure of phenotypes. The following are permitted: "independence", "fixed", "stat_M_dep", "non_stat_M_dep", "exchangeable", "AR-M" and "unstructured" (default = "independence").
- **pow**: a vector of the power weight to be used at a trait level (default = c(1:8, Inf)).
- **n.perm**: a numeric value of number of null statistics (default = 1000).
- **null.type**: a character string specifying how to generate null statistics; "perm" is used when null statistics are generated using permutations and "sim" is used when null statistics are generated using simulations (default = "perm").
- **score.test**: a logical value indicating whether to include GEEaSPU-Score test along with GEE-Score test (default = FALSE). If TRUE, it computes p-values of GEEaSPU-Score and GEE-Score as well as GEEaSPU test.

Details
Adaptive association tests for single SNP and multiple phenotypes using GEE.

Value
a vector of p-values from GEE-SPU(pow) tests and GEE-aSPU test.

Note
When large SNP-set (namely large gene size) or large number of phenotypes are included, the permutation based test (null.type = "perm") is recommended.
An option "binomial" model only supports the option, null.type = "sim".

Author(s)
Junghi Kim and Wei Pan

References
Examples

-- simulating phenotypes
-- n.subjects: number of subjects
-- n.traits: number of phenotypes
-- Sigma: covariance matrix of phenotypes (e.g. AR(1))

set.seed(136)
n.subjects <- 100
n.traits <- 3
sigma <- 2; rho <- 0.5
Sigma0 <- diag(n.traits);
Sigma <- sigma * rho^abs(row(Sigma) - col(Sigma))
eS <- eigen(Sigma, symmetric = TRUE)
ev <- eS$values
X <- matrix(rnorm(n.traits * n.subjects), n.subjects)
pheno <- X * diag(sqrt(pmax(ev, 0)), ncol(Sigma))

-- simulating genotype

-- Computing the p-value of GEEaSPU test with the permutation based method
Pv1 <- GEEaSPU(pheno = pheno, geno = geno, Z = NULL, pow = c(1,2,4,Inf),
n.perm = 1000, null.type = "perm", score.test = FALSE)

-- Each element of Pv1 is a p value of GEE-SPU(pow) in order
-- The last element of Pv1 is a p value of GEE-aSPU test

Pv1

> Pv1
SPU.1 SPU.2 SPU.4 SPU.Inf aSPU
0.1890000 0.4070000 0.3520000 0.3040000 0.2917083

> Pv1[length(Pv1)]
aSPU
0.2917083

GEEaSPUpath

An adaptive sum of powered score (SPU) test for gene-set (pathway) and multiple phenotypes

Description

Tests whether gene-set (pathway) is associated with multivariate outcomes; provides a series of p-values of GEE-SPU(pow, pow2, pow3) and GEEaSPUpath tests.
Usage

```
GEEaSPUpath(phen, geno, nSNPs, Z = NULL, corstr = "independence",
  pow = c(1,2,4,8), pow2 = c(1,2,4,8), pow3 = c(1,2,4,8), n.perm = 1000)
```

Arguments

- **phen**
 a numeric phenotype matrix with each row as a different individual and each column as a separate phenotype.

- **geno**
 a numeric genotype matrix with each row as a different individual and each column as a SNP; the SNPs (with the number stored in nSNPs) from one gene are stored consecutively from the first gene.

- **nSNPs**
 A numeric vector, whose length matches to the total number of genes; each element of vector indicate the number of SNPs in each gene.

- **Z**
 a numeric covariate matrix with each row as a different individual and each column as a covariated to be adjusted.

- **corstr**
 a character string specifying the correlation structure of phenotypes. The following are permitted: "independence", "fixed", "stat_M_dep", "non_stat_M_dep", "exchangeable", "AR-M" and "unstructured" (default = "independence").

- **pow**
 a vector of the power weight to be used at a SNP level (default = c(1,2,4,8)).

- **pow2**
 a vector of the power weight to be used at a trait level (default = c(1,2,4,8)).

- **pow3**
 a vector of the power weight to be used at a gene level (default = c(1,2,4,8)).

- **n.perm**
 a numeric value of number of null statistics (default = 1000).

Details

Adaptive association tests for gene-set (pathway) and multiple phenotypes using GEE.

Value

a vector of p-values from GEE-SPU(pow, pow2, pow3) tests and GEE-aSPUpath test.

Note

GEEaSPUpath function only supports a case for a quantitative trait (model = "gaussian") and a permutation based test (null.type = "perm").

Author(s)

Junghi Kim and Wei Pan

References

Examples

-- simulating phenotypes
-- n.subjects: number of subjects
-- n.traits: number of phenotypes
-- Sigma: covariance matrix of phenotypes (e.g. AR(1))

set.seed(136)
n.subjects <- 100
n.traits <- 3
sigma <- diag(n.traits)
Sigma <- sigma * rho^abs(row(sigmaPI - col(sigmaPII
eS <- eigen(Sigma, symmetric = TRUE)
ev <- eS$values
X <- matrix(rnorm(n.subjects * n.traits), n.subjects)
pheno <- X %*% diag(sqrt(pmax(evL PIIL ncol(Sigma)) %*% eS$vectors

-- simulating genotype
-- Assume we have two genes each of which has 3 and 5 SNPs respectively.
-- n.genos: number of SNPs included in the gene1
-- n.genos2: number of SNPs included in the gene2
-- nSNPs <- c(3,5)

n.genos1 <- 3
n.genos2 <- 5
maf1 <- 0.2
maf2 <- 0.4
gene1 <- matrix(rbinom(n = n.subjects*n.genos1, size = 2, prob = maf1), ncol = n.genos1)
gene2 <- matrix(rbinom(n = n.subjects*n.genos2, size = 2, prob = maf2), ncol = n.genos2)
geno <- cbind(gene1, gene2)

-- Computing the p-value of GEEaSPUpath test
Pvl <- GEEaSPUpath(pheno = pheno, geno = geno, nSNPs = c(3,5), Z = NULL,
 corstr = "independence", pow = c(1,4,8), pow2 = c(1,4,8),
 pow3 = c(1,4,8), n.perm = 1000)

-- Each element of Pvl is a p value of GEE-SPU(pow,pow2,pow3) in order
-- The last element of Pvl is a p value of GEE-aSPUpath test
Pvl
Pvl[length(Pvl)]

> Pvl
SPU.1.1.1 SPU.1.1.4 SPU.1.1.8 SPU.1.4.1 SPU.1.4.4 SPU.1.4.8 SPU.1.8.1 SPU.1.8.4
0.0090000 0.0560000 0.0700000 0.0620000 0.0830000 0.1120000 0.0610000 0.0820000
SPU.1.8.8 SPU.4.1.1 SPU.4.1.4 SPU.4.1.8 SPU.4.4.1 SPU.4.4.4 SPU.4.4.8 SPU.4.8.1
0.1060000 0.5810000 0.5430000 0.4920000 0.6240000 0.6400000 0.6270000 0.6490000
SPU.4.8.4 SPU.4.8.8 SPU.8.1.1 SPU.8.1.4 SPU.8.1.8 SPU.8.4.1 SPU.8.4.4 SPU.8.4.8
0.6710000 0.6750000 0.5830000 0.5370000 0.4810000 0.6340000 0.6460000 0.6380000
GEEaSPUset

An adaptive sum of powered score (SPU) test for SNP-set (gene) and multiple phenotypes

Description

Tests whether SNP-set (gene) is associated with multivariate outcomes; provides a series of p-values of GEE-SPU(pow, pow2) and GEEaSPUset tests.

Usage

GEEaSPUset(pheno, geno, Z = NULL, model = "gaussian", corstr = "independence",
pow = c(1,2,4,8), pow2 = c(1,2,4,8), n.perm = 1000,
nullNtype = "perm", scoreNtest = FALSE)

Arguments

pheno a numeric phenotype matrix with each row as a different individual and each column as a separate phenotype.
geno a numeric genotype matrix with each row as a different individual and each column as a snp.
Z a numeric covariate matrix with each row as a different individual and each column as a covaried to be adjusted.
model a character string specifying the model of the phenotypes. Models supported are "gaussian" for a quantitative trait and "binomial" for a binary trait (default = "gaussian").
corstr a character string specifying the correlation structure of phenotypes. The following are permitted: "independence", "fixed", "stat_M_dep", "non_stat_M_dep", "exchangeable", "AR-M" and "unstructured" (default = "independence").
pow a vector of the power weight to be used at a SNP level (default = c(1,2,4,8)).
pow2 a vector of the power weight to be used at a trait level (default = c(1,2,4,8)).
nperm a numeric value of number of null statistics (default = 1000).
nulNtype a character string specifying how to generate null statistics; "perm" is used when null statistics are generated using permutations and "sim" is used when null statistics are generated using simulations (default = "perm").
scoreNtest a logical value indicating whether to include GEEaSPU-Score test along with GEE-Score test (default = FALSE). If TRUE, it computes p-values of GEEaSPU-Score and GEE-Score as well as GEEaSPU test.
Details

Adaptive association tests for SNP-set (gene) and multiple phenotypes using GEE.

Value

a vector of p-values from GEE-SPU(pow, pow2) tests and GEE-aSPUset test.

Note

When large SNP-set (namely large gene size) or large number of phenotypes are included, the permutation based test (null.type = "perm") is recommended.

An option "binomial" model only supports the option, null.type="sim".

Author(s)

Junghi Kim and Wei Pan

References

Examples

```r
set.seed(136)
n.subjects <- 100
n.traits <- 3
sigma <- 2; rho <- 0.5
Sigma0 <- diag(n.traits);
Sigma <- sigma * rho^abs(row(Sigma0) - col(Sigma0))
eS <- eigen(Sigma, symmetric = TRUE)
ev <- eS$values
X <- matrix(rnorm(n.subjects * n.traits), n.subjects)
pheno <- X %*% diag(sqrt(pmax(ev[, 0])), ncol(Sigma)) %*% eS$vectors

set.seed(136)
n.subjects <- 100
n.traits <- 3
sigma <- 2; rho <- 0.5
Sigma0 <- diag(n.traits);
Sigma <- sigma * rho^abs(row(Sigma0) - col(Sigma0))
eS <- eigen(Sigma, symmetric = TRUE)
ev <- eS$values
X <- matrix(rnorm(n.subjects * n.traits), n.subjects)
pheno <- X %*% diag(sqrt(pmax(ev[, 0])), ncol(Sigma)) %*% eS$vectors

# -- simulating genotype
# -- n.genoe: number of SNPs included in the SNP set/gene

n.genoe <- 3
maf <- 0.2
geno <- matrix(rbinom(n = n.subjects * n.genoe, size = 2, prob = maf), ncol = n.genoe)

# -- Computing the p-value of GEEaSPUset test with the permutation based method
Pv1 <- GEEaSPUset(pheno = pheno, geno = geno, Z = NULL, model = "gaussian",
```
corstr = "independence", pow = c(1,4,Inf), pow2 = c(1,4,Inf), n.perm = 1000,
null.type = "perm", score.test = FALSE)

-- Each element of pvl is a p value of GEE-SPU(pow,pow2) in order
-- The last element of pvl is a p value of GEE-aSPUset test
pvl
pvl[length(pvl)]

> Pvl
SPU.1.1 SPU.1.4 SPU.1.Inf SPU.4.1 SPU.4.4 SPU.4.Inf SPU.Inf.1
0.0140000 0.0880000 0.0720000 0.5300000 0.4100000 0.3210000 0.5510000
SPU.Inf.4 SPU.Inf.Inf aSPUset
0.4870000 0.4100000 0.04095904

> Pvl[length(Pvl)]
aSPUset
0.04095904
Index

<table>
<thead>
<tr>
<th>Topic</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNP based</td>
<td>GEEaSPU, 2</td>
</tr>
<tr>
<td>SNP-set/gene based</td>
<td>GEEaSPUset, 7</td>
</tr>
<tr>
<td>gene-set/pathway based</td>
<td>GEEaSPUpath, 4</td>
</tr>
<tr>
<td>multiple phenotypes</td>
<td>GEEaSPU, 2</td>
</tr>
<tr>
<td></td>
<td>GEEaSPUpath, 4</td>
</tr>
<tr>
<td></td>
<td>GEEaSPUset, 7</td>
</tr>
</tbody>
</table>

GEEaSPU, 2
GEEaSPU-package, 2
GEEaSPUpath, 4
GEEaSPUset, 7