Package ‘GUTS’

December 2, 2021

Type Package

Title Fast Calculation of the Likelihood of a Stochastic Survival Model

Version 1.2

Date 2021-11-30

Author Carlo Albert <carlo.albert@eawag.ch>, Sören Vogel <soeren.vogel@posteo.ch>, Oliver Jakoby <oliver.jakoby@rifcon.de>, Alexander Singer <alexander.singer@rifcon.de> and Dirk Nickisch <dirk.nickisch@rifcon.de>

Maintainer Oliver Jakoby <oliver.jakoby@rifcon.de>

Description Given exposure and survival time series as well as parameter values, GUTS allows for the fast calculation of the survival probabilities as well as the logarithm of the corresponding likelihood.

License GPL (>= 2)

Depends R (>= 3.5.0), methods, Rcpp (>= 0.12.16)

LinkingTo Rcpp

LazyLoad yes

LazyData no

Encoding UTF-8

Suggests knitr, rmarkdown, adaptMCMC, xlsx, drc, testthat

VignetteBuilder knitr

Repository CRAN

Repository/R-Forge/Project guts

Repository/R-Forge/Revision 71

Repository/R-Forge/DateTimeStamp 2021-12-01 21:42:57

Date/Publication 2021-12-02 08:00:06 UTC

NeedsCompilation yes
GUTS-package

Description

GUTS (General Unified Threshold model of Survival) is a stochastic survival model for ecotoxicology. The package allows for the definition of exposure and survival time series as well as parameter values, and the fast calculation of the survival probabilities as well as the logarithm of the corresponding likelihood.

Details

Package: GUTS
Type: Package
License: GPL (>= 2)

A GUTS object is a special list of class “GUTS”. Functions guts_setup, guts_calc_loglikelihood and guts_calc_survivalprobs are available to create and work with GUTS objects. A data set diazinon is also included. See links for more details.

Author(s)

Carlo Albert <carlo.albert@eawag.ch>, Sören Vogel <soeren.vogel@posteo.ch>, Oliver Jakoby <oliver.jakoby@rifcon.de>, Alexander Singer <alexander.singer@rifcon.de> and Dirk Nickisch <dirk.nickisch@rifcon.de>

Maintainer: Oliver Jakoby <oliver.jakoby@rifcon.de>

References

diazinon

See Also
guts_setup, guts_calc_loglikelihood, guts_calc_survivalprobs, guts_report_damage, diazinon, Rcpp

diazinon
GUTS data set with Gammarus pulex exposed to diazinon

Description

Data of 3 pulsed toxicity tests with the freshwater crustacean Gammarus pulex and diazinon, an organophosphate insecticide.

Usage

data("diazinon")

Format

A list containing 12 data vectors.

Author(s)

Carlo Albert <carlo.albert@eawag.ch>, Sören Vogel <soeren.vogel@posteo.ch>, Oliver Jakoby <oliver.jakoby@rifcon.de>, Alexander Singer <alexander.singer@rifcon.de> and Dirk Nickisch <dirk.nickisch@rifcon.de> Maintainer: Oliver Jakoby <oliver.jakoby@rifcon.de>

Source

See Also

GUTS
Description

GUTS (General Unified Threshold model of Survival) is a stochastic survival model for ecotoxicology. The package allows for the definition of exposure and survival time series as well as parameter values, and the fast calculation of the survival probabilities as well as the logarithm of the corresponding likelihood.

The package implements the GUTS-SIC (also called GUTS-RED) variants that assume a one-compartment model with first-order toxicokinetics.

Usage

```r
guts_setup(C, Ct, y, yt, dist = "lognormal",
model = "Proper",
N = 1000L,
MF = 100L, M = max(5000L, as.integer(ceiling(MF * length(union(Ct, yt))))),
SVR = 1L,
study = "", Clevel = ""
)

guts_calc_loglikelihood(gobj, par, external_dist = NULL,
use_multinomial_coefficient = FALSE)

guts_calc_survivalprobs(gobj, par, external_dist = NULL)

guts_report_damage(gobj)

guts_report_sppe(gobj)

guts_report_squares(gobj)
```

Arguments

- **C**: Numeric vector of concentrations. Vector must contain at least 2 values and be of the same length as Ct.
- **Ct**: Numeric vector of concentration time points. Vector must contain at least 2 values and be of the same length as C. Time points must start at 0, and contain unique values in ascending order.
- **y**: Integer vector (counts) of survivors. Vector must contain at least 2 values and be of the same length as yt. y must not be ascending.
- **yt**: Numeric vector of survivor time points. Vector must contain at least 2 values and be of the same length as y. Time points must start at 0, and contain unique values in ascending order. Survivor information at time points later than the latest concentration time point will be disregarded (with a warning).
GUTS

dist Distribution as character, either “lognormal” (default), “loglogistic”, “external” or “delta”.

model Model as character, either “Proper” (for full model, the default), “IT” (for individual tolerance), or “SD” (for stochastic death).

MF Integer. Multiplication factor for M. Must be greater than 1. MF is used only if “model = 'SD’” or “model = ‘Proper’” and M is not specified. Setting MF automatically ensures that the number of points for time discretization M is at least the number of measurement time steps multiplied by MF. M = max(MF * number of measurement time steps, 5000).

M Integer. Desired number of points for time discretization. Must be greater than 1. M is used only if “model = 'SD’” or “model = ‘Proper’”

N Integer. Sample length of individual tolerance thresholds. Must be greater than 2. N is used only, if “model = 'Proper’”

study string with the name of the study

Clevel character vector with names for each of the concentration levels

SVR Numeric surface-volume-ratio. A multiplication factor to kd.

gobj GUTS object. The object to be updated (and used for the calculation).

par Numeric vector of parameters. See details below.

external_dist Numeric vector containing the distribution of individual thresholds. Only used if dist = 'external'. See details below.

use_multinomial_coefficient

If “TRUE” returns loglikelihood from the correct multinomial distribution. Defaults to ignoring the constant multinomial coefficient for performance reasons.

Details

Functions:

Use guts_setup to define (or alter) a GUTS object. Various checks are applied to the data. On success, a GUTS object will be created.

Use guts_calc_loglikelihood to calculate the survival probabilities and the corresponding loglikelihood for a given set of parameters. The function is very fast and can be used in routines for parameter estimation. The function returns the loglikelihood, however it also updates the fields par, S, D, SPPE, squares, zt and LL of the GUTS-object.

guts_calc_survivalprobs is a convenience wrapper that can be used for predictions; it returns the survival probabilities, however it also updates the fields par, S, D, SPPE, squares, zt and LL of the GUTS-object.

guts_report_damage returns a data.frame with time grid points and the damage for each of these. The function reports the damage that was calculated in the previous call to guts_calc_loglikelihood or guts_calc_survivalprobs.

guts_report_squares returns the sum of squares. The function reports the sum of squares that was calculated in the previous call to guts_calc_loglikelihood or guts_calc_survivalprobs.

guts_report_sppe returns the survival-probability prediction error (SPPE). The function reports the SPPE that was calculated in the previous call to guts_calc_loglikelihood or guts_calc_survivalprobs.

Models, Parameters, and Distributions:

The GUTS package provides three model types:
• Proper: a GUTS-SIC- Proper (also called GUTS-RED- Proper) model using random individual tolerances and a stochastic death process, when individual tolerances are exceeded.
• IT: a GUTS-SIC-IT (GUTS-RED-IT) individual tolerance model using random individual tolerances. If an individual’s tolerance threshold is exceeded, the individual dies.
• SD: a GUTS-SIC-SD (GUTS-RED-SD) stochastic death model using a stochastic death process above a population-wide tolerance threshold. The tolerance-threshold is the same for all individuals.

The Proper GUTS model requires the following parameters \(\text{par} \), while variants IT and SD are based on a reduced subset (as indicated in brackets). Parameter values in \(\text{par} \) must be ordered as listed here:

- \(\text{hb} \): background mortality rate (Proper, IT, SD)
- \(\text{ke} \): dominant rate constant (Proper, IT, SD)
- \(\text{kk} \): killing rate (Proper, SD)
- further parameters for the tolerance threshold (in SD) or the threshold distribution \(\text{dist} \) (in Proper and IT)

For model type “SD” (stochastic death), required parameters \(\text{par}[1:4] \) are \(\text{hb} \), \(\text{ke} \), \(\text{kk} \) and \(\text{mn} \), which is the population-wide tolerance threshold. For backwards compatibility this model type can be initiated setting \(\text{dist} = \text{"Delta"} \) and \(\text{model} = \text{"Proper"} \).

For model type “IT” (individual tolerance), required parameters \(\text{par}[1:2] \) are \(\text{hb} \), \(\text{ke} \), as well as respective distribution parameters (from \(\text{par}[3] \) onwards). Parameter (\(\text{kk} \)) is set internally to infinity and does not need to be provided.

For model type “Proper”, all parameters are needed. \(\text{par}[1:3] \) take \(\text{hb} \), \(\text{ke} \), \(\text{kk} \) distribution parameters follow (from \(\text{par}[4] \) onwards).

For model types “Proper” and “IT” individual tolerance thresholds are created internally. Individual tolerances are drawn from the specified distribution \(\text{dist} \). The parameter values required depend on the specified \(\text{dist} \):

- “lognormal”: requires the parameters \(\text{mn} \) and \(\text{sd} \) which are the mean and standard deviation of the lognormal random distribution. In contrast to parameters \(\text{meanlog} \) and \(\text{sdlog} \) of function \(\text{dlnorm} \), these parameters are not on the logscale. They relate in the following way:

\[
sdlog = \sqrt{\ln \frac{1 + sd^2}{mn^2}}
\]

\[
\text{meanlog} = \ln mn - \frac{1}{2} * sdlog^2
\]

- “loglogistic”: requires the parameters \(\text{mn} = \text{scale} = \text{median} \) and \(\text{beta} = \text{shape} \).

The number of parameters is checked according to \(\text{dist} \) and \(\text{model} \). Wrong number of parameters invokes an error, wrong parameter values (e.g., negative values) invoke a warning, and the loglikelihood is set to \(-\text{Inf}\).
Field and Attribute Access:
Fields and attributes of an object of class “GUTS” are read-only. It is not possible to directly modify single elements of the GUTS object. Instead use function `guts_setup` to create GUTS objects or modify fields on existing GUTS objects. Functions `guts_calc_loglikelihood` and `guts_calc_survivalprobs` update an object’s fields `par` (parameters), `D` (damage), `squares` (sum of squares), `SPPE` (survival-probability prediction error), `S` (survival probabilities) and `LL` (the loglikelihood).

Value

`guts_setup` returns a list of class “GUTS” with the following fields:

- `C`: Concentrations.
- `Ct`: Concentration time points.
- `y`: Survivors.
- `yt`: Survivor time points.
- `dist`: Distribution.
- `model`: Model.
- `N`: Sample length.
- `M`: Time grid points.
- `par`: Parameters.
- `S`: Vector of survivor probabilities.
- `D`: Vector of internal damage for each of the `M` time grid points.
- `squares`: Sum of squares
- `SPPE`: Survival-probability prediction error.
- `LL`: The loglikelihood.

`guts_calc_loglikelihood` returns the loglikelihood.
`guts_calc_survivalprobs` returns the survival probabilities.
`guts_report_damage` returns the damage.
`guts_report_squares` returns the sum of squares.
`guts_report_sppe` returns the survival-probability prediction error (SPPE).

Note
The GUTS project web site can be found here: http://guts.r-forge.r-project.org. For questions and discussion, please subscribe to the mailing list there.

Author(s)
Carlo Albert <carlo.albert@eawag.ch>, Sören Vogel <soeren.vogel@posteo.ch>, Oliver Jakoby <oliver.jakoby@rifcon.de>, Alexander Singer <alexander.singer@rifcon.de> and Dirk Nickisch <dirk.nickisch@rifcon.de>
Maintainer: Oliver Jakoby <oliver.jakoby@rifcon.de>
References

See Also
diazinon, GUTS-package and the package vignettes for examples on how to calibrate and project GUTS-models.

Examples

data(diazinon)

create GUTS object to calculate the Proper model
using a log-normal distribution of tolerance thresholds
gts.lognormal <- guts_setup(
 C = diazinon$C1, Ct = diazinon$Ct1,
 y = diazinon$y1, yt = diazinon$yt1,
 dist = "lognormal", model = "Proper")

calculate likelihood of Proper model using log-normal distribution
guts_calc_loglikelihood(
 gts.lognormal,
 c(0.051, 0.126, 1.618, 19.099, 6.495))
gts.lognormal # show GUTS object
repeating calculation above
with threshold values from an external log-normal distribution.
Note, we need to account for the different parametrisations
used in the GUTS-package and in rlnorm
sigma2 <- log(1 + 6.495^2 / 19.099^2)
mu <- log(19.099) - 0.5 * sigma2
lognormal.thresholds <- rlnorm(1000, meanlog = mu, sdlog = sqrt(sigma2))
gts.external <- guts_setup(C = diazinon$C1, Ct = diazinon$Ct1,
y = diazinon$y1, yt = diazinon$yt1,
dist = "external", model = "Proper")
guts_calc_loglikelihood(gts.external,
c(0.051, 0.126, 1.618), external_dist = lognormal.thresholds)
-> Results using external and internal distributions are comparable

create GUTS object to calculate the Proper model
using a log-logistic distribution of tolerance thresholds

gts.loglogistic <- guts_setup(C = diazinon$C1, Ct = diazinon$Ct1,
y = diazinon$y1, yt = diazinon$yt1,
dist = "loglogistic", model = "Proper")
guts_calc_survivalprobs(gts.loglogistic,
c(0.01, 0.2, 0.3, 3, 2))
str(guts_report_damage(gts.loglogistic))

calculate survival probabilities with IT model
using a log-logistic distribution of tolerance thresholds

guts_calc_survivalprobs(guts_setup(C = diazinon$C1, Ct = diazinon$Ct1,
y = diazinon$y1, yt = diazinon$yt1,
dist = "loglogistic", model = "IT"),
c(0.01, 0.2, 3, 2))
calculate survival probabilities with an SD model with a fixed tolerance threshold

guts_calc_survivalprobs(guts_setup(C = diazinon$C1, Ct = diazinon$Ct1,
y = diazinon$y1, yt = diazinon$yt1,
dist = "loglogistic", model = "SD"),
c(0.01, 0.2, 0.3, 3))

Not run: guts_calc_survivalprobs(gts.external, rep(.5, 3))
Warning and no result, because no external distribution was specified

Not run: guts_calc_survivalprobs(gts.loglogistic , 1:4) # Error.
Not run: gts.loglogistic[["C"]]<- 1:3 # Error.
Index

* datasets
 diazinon, 3
 [[GUTS-package], 2
 $<-.GUTS (GUTS-package), 2
 attr<-.GUTS (GUTS-package), 2
 attributes<-.GUTS (GUTS-package), 2
 diazinon, 2, 3, 3, 8
 dlnorm, 6
 GUTS, 3, 4
 guts (GUTS), 4
 GUTS-package, 2
 guts_calc_loglikelihood, 2, 3
 guts_calc_loglikelihood (GUTS), 4
 guts_calc_survivalprobs, 2, 3
 guts_calc_survivalprobs (GUTS), 4
 guts_report_damage, 3
 guts_report_damage (GUTS), 4
 guts_report_sppe (GUTS), 4
 guts_report_squares (GUTS), 4
 guts_setup, 2, 3
 guts_setup (GUTS), 4
 modguts (GUTS-package), 2
 mostattributes<-.GUTS (GUTS-package), 2
 print.GUTS (GUTS-package), 2
 Rcpp, 3