Package ‘GaussSuppression’

September 24, 2021

Type Package
Title Tabular Data Suppression using Gaussian Elimination
Version 0.1.0
Date 2021-09-23
Maintainer Øyvind Langsrud <oyl@ssb.no>
Depends Matrix
Imports SSBtools, RegSDC, stats, methods
Description A statistical disclosure control tool to protect tables by suppression using the Gaussian elimination secondary suppression algorithm. Primary suppression functions for the minimum frequency rule, the dominance rule and a directly-disclosive rule are included. General primary suppression functions can be supplied as input. Suppressed frequencies can be replaced by synthetic decimal numbers as described in Langsrud (2019) <doi:10.1007/s11222-018-9848-9>.
License Apache License 2.0
Encoding UTF-8
RoxygenNote 7.1.2
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Øyvind Langsrud [aut, cre],
Daniel Lupp [aut]
Repository CRAN
Date/Publication 2021-09-24 07:50:02 UTC

R topics documented:

DominanceRule .. 2
GaussSuppressDec ... 3
GaussSuppressionFromData 4
MaxContribution ... 7
Description

Supports application of multiple values for n and k. The function works on magnitude tables containing negative cell values by calculating contribution based on absolute values.

Usage

DominanceRule(data, x, crossTable, numVar, n, k, ...)

Arguments

- `data`: the dataset
- `x`: ModelMatrix generated by parent function
- `crossTable`: crossTable generated by parent function
- `numVar`: vector containing numeric values in the data set
- `n`: parameter n in dominance rule.
- `k`: parameter k in dominance rule.
- `...`: unused parameters

Details

Currently the implementation only supports a single numeric variable.

Value

logical vector that is TRUE in positions corresponding to cells breaching the dominance rules.

Author(s)

Daniel Lupp
GaussSuppressDec

Cell suppression with synthetic decimal numbers

Description

GaussSuppressionFromData is run and decimal numbers are added to output by a modified (for sparse matrix efficiency) version of SuppressDec.

Usage

GaussSuppressDec(
 data,
 ...,
 output = NULL,
 digits = 9,
 nRep = NULL,
 rmse = \pi/3,
 sparseLimit = 500,
 rndSeed = 123,
 runIpf = FALSE,
 eps = 0.01,
 iter = 100,
 mismatchWarning = TRUE,
 whenDuplicatedInner = NULL,
 whenMixedDuplicatedInner = warning
)

Arguments

data Input data as a data frame

... Further parameters to GaussSuppressionFromData

output NULL (default), "publish", "inner", "publish_inner", or "publish_inner_x" (x also).

digits Parameter to RoundWhole. Values close to whole numbers will be rounded.

nRep NULL or an integer. When >1, several decimal numbers will be generated.

rmse Desired root mean square error of decimal numbers. Variability around the expected, according to the linear model, inner frequencies. The expected frequencies are calculated from the non-suppressed publishable frequencies.

sparseLimit Limit for the number of rows of a reduced x-matrix within the algorithm. When exceeded, a new sparse algorithm is used.

rndSeed If non-NULL, a random generator seed to be used locally within the function without affecting the random value stream in R.

runIpf When TRUE, additional frequencies are generated by iterative proportional fitting using Mipf.
GaussSuppressionFromData

Description

Aggregates are generated followed by primary suppression followed by secondary suppression by Gaussian elimination by GaussSuppression

Usage

GaussSuppressionFromData(
 data,
 dimVar = NULL,
 freqVar = NULL,
 numVar = NULL,
)
GaussSuppressionFromData

weightVar = NULL,
charVar = NULL,
hierarchies = NULL,
formula = NULL,
maxN = 3,
protectZeros = TRUE,
secondaryZeros = FALSE,
candidates = CandidatesDefault,
primary = PrimaryDefault,
forced = NULL,
hidden = NULL,
singleton = SingletonDefault,
singletonMethod = ifelse(secondaryZeros, "anySumNOTprimary", "anySum"),
printInc = TRUE,
output = "publish",
x = NULL,
crossTable = NULL,
preAggregate = is.null(freqVar),
extraAggregate = preAggregate & !is.null(charVar),
...
)

Arguments

data Input data as a data frame
dimVar The main dimensional variables and additional aggregating variables. This parameter can be useful when hierarchies and formula are unspecified.
freqVar A single variable holding counts (name or number).
numVar Other numerical variables to be aggregated
weightVar weightVar Weights (costs) to be used to order candidates for secondary suppression
charVar Other variables possibly to be used within the supplied functions
hierarchies List of hierarchies, which can be converted by AutoHierarchies. Thus, the variables can also be coded by "rowFactor" or "," which correspond to using the categories in the data.
formula A model formula
maxN Suppression parameter. Default: Cells having counts <= maxN are set as primary suppressed.
protectZeros Suppression parameter. Default when TRUE: Empty cells (count=0) are set as primary suppressed.
secondaryZeros Suppression parameter.
candidates GaussSuppression input or a function generating it (see details) Default: CandidatesDefault
primary GaussSuppression input or a function generating it (see details) Default: PrimaryDefault
forced GaussSuppression input or a function generating it (see details)
hidden GaussSuppression input or a function generating it (see details)
singleton

GaussSuppression input or a function generating it (see details) Default: SingletonDefault

singletonMethod

GaussSuppression input

printInc

GaussSuppression input

output

One of "publish" (default), "inner", "publish_inner", "publish_inner_x", "publish_x", "inner_x", and "input2functions" (input to supplied functions). Here "inner" means input data (possibly pre-aggregated) and "x" means dummy matrix (as input parameter x).

x

x (modelMatrix) and crossTable can be supplied as input instead of generating it from ModelMatrix

crossTable

See above.

preAggregate

When TRUE, the data will be aggregated within the function to an appropriate level. This is defined by the dimensional variables according to dimVar, hierarchies or formula and in addition charVar.

extraAggregate

When TRUE, the data will be aggregated by the dimensional variables according to dimVar, hierarchies or formula. The aggregated data and the corresponding x-matrix will only be used as input to the singleton function and GaussSuppression. This extra aggregation is useful when parameter charVar is used. Supply "publish_inner", "publish_inner_x", "publish_x" or "inner_x" as output to obtain extra aggregated results. Supply "inner" or "input2functions" to obtain other results.

Details

The supplied functions for generating GaussSuppression input takes the following arguments:
crossTable, x, freq, num, weight, maxN, protectZeros, secondaryZeros, data, freqVar, numVar, weightVar, charVar, dimVar and where the two first are ModelMatrix outputs (modelMatrix renamed to x). The vector, freq, is aggregated counts (t(x) %*% data[[freqVar]]). Similarly, num, is a data frame of aggregated numerical variables. It is possible to supply several primary functions joined by c, e.g. (c(FunPrim1,FunPrim2)). All NAs returned from any of the functions force the corresponding cells not to be primary suppressed.

Value

Aggregated data with suppression information

Author(s)

Øyvind Langsrud and Daniel Lupp

Examples

z1 <- SSBtoolsData("z1")
GaussSuppressionFromData(z1, 1:2, 3)
MaxContribution

Find major contributors to aggregates

Description

Assuming aggregates are calculated via a dummy matrix by $z = t(x) \%\% y$, the n largest contributors are found (value or index) for each aggregate.

Usage

MaxContribution(x, y, n = 1, decreasing = TRUE, index = FALSE)
Ncontributors

Arguments

x A (sparse) dummy matrix
y Vector of input values (contributors)
n Number of contributors to be found
decreasing Ordering parameter. Smallest contributors found when FALSE.
index Indices to y returned when TRUE

Value
Matrix with largest contributors in first column, second largest in second column and so on.

Author(s)
Øyvind Langsrud

See Also
ModelMatrix

Examples

library(SSBtools)

z <- SSBtoolsData("sprt_emp_withEU")
z$age[z$age == "Y15-29"] <- "young"
z$age[z$age == "Y30-64"] <- "old"
a <- ModelMatrix(z, formula = ~age + geo, crossTable = TRUE)

cbind(as.data.frame(a$crossTable), MaxContribution(a$modelMatrix, z$ths_per, 1))

b <- ModelMatrix(z[, -4], crossTable = TRUE, inputInOutput = c(TRUE, FALSE, TRUE))

cbind(b$crossTable, MaxContribution(b$modelMatrix, z$ths_per, 10))

| Ncontributors | Find the number of unique groups contributing to aggregates |

Description
Assuming aggregates are calculated via a dummy matrix by z = t(x) %*% y, the number of unique contributing groups, according to a grouping variable, are found for each aggregate. The missing group category is not counted.
NcontributorsHolding

Usage

\[\text{Ncontributors}(x, \text{groups}) \]

Arguments

- \(x \): A (sparse) dummy matrix
- \(\text{groups} \): Vector of group categories

Value

Vector of numbers of unique groups

Author(s)

Øyvind Langsrud

See Also

- ModelMatrix

Examples

```r
library(SSBtools)

z <- SSBtoolsData("sprt_emp_withEU")
z$age[z$age == "Y15-29"] <- "young"
z$age[z$age == "Y30-64"] <- "old"
z$groups <- c("A", "A", "B", "A", "B", "C")

a <- ModelMatrix(z, formula = ~age*eu + geo + year, crossTable = TRUE)
cbind(as.data.frame(a$crossTable), nGroups = Ncontributors(a$modelMatrix, z$groups))
cbind(as.data.frame(a$crossTable), nYears = Ncontributors(a$modelMatrix, z$year))
cbind(as.data.frame(a$crossTable), nUnique_ths_per = Ncontributors(a$modelMatrix, z$ths_per))
```

NcontributorsHolding **Ncontributors with holding-indicator**

Description

The aggregates (columns of \(x \)) are grouped by a holding indicator. Within each holding group, the number of unique groups (output) is set to be equal.

Usage

\[\text{NcontributorsHolding}(x, \text{groups}, \text{holdingInd} = \text{NULL}) \]
SuppressDirectDisclosure

Arguments

- \(x \) A (sparse) dummy matrix
- \(\text{groups} \) Vector of group categories
- \(\text{holdingInd} \) Vector of holding group categories

Details

A representative within the holding group is used to calculate output by \(N\text{contributors} \). The one with maximal column sum of \(x \) is chosen as the representative. Normally this will be an aggregate representing the holding group total. When \(\text{holdingInd} \) is NULL (default), the function is equivalent to \(N\text{contributors} \).

Value

Vector of numbers of unique groups

Author(s)

Øyvind Langsrud

SuppressDirectDisclosure

Suppression of directly-disclosive cells

Description

Function for suppressing directly-disclosive cells in frequency tables. The method detects and primary suppresses directly-disclosive cells with the \texttt{FindDisclosiveCells} function, and applies a secondary suppression using Gauss suppression (see \texttt{GaussSuppressionFromData}).

Usage

\[
\text{SuppressDirectDisclosure}(\\
\text{data,} \\
\text{dimVar,} \\
\text{freqVar,} \\
\text{coalition} = 1, \\
\text{secondaryZeros} = \text{coalition}, \\
\text{candidates} = \text{DirectDisclosureCandidates}, \\
\ldots \\
\text{)}
\]
SuppressionFromDecimals

Arguments

data the input data
dimVar main dimensional variables for the output table
freqVar variable containing frequency counts
coalition numeric variable, parameter for primary suppression. Default value is 1.
secondaryZeros logical or numeric value for secondary suppression. If logical, it is converted to resp numeric value (0 or 1). If numeric, it describes the largest number that is prioritized over zeroes in secondary suppression. Default value is equal to coalition.
candidates function parameter for gauss suppression.
... optional parameters that can be passed to the primary suppression method. See FindDisclosiveCells for details.

Details

Currently, the method has no support for hierarchical data.

Value
data.frame containing the result of the suppression

Author(s)
Daniel Lupp

Examples
tex <- data.frame(v1 = rep(c('a', 'b', 'c'), times = 4),
v2 = c('i', 'i', 'i', 'h', 'h', 'h', 'i', 'i', 'i', 'h', 'h', 'h'),
v3 = c('y', 'y', 'y', 'y', 'y', 'y', 'z', 'z', 'z', 'z', 'z', 'z'),
freq = c(0, 0, 5, 0, 2, 3, 1, 0, 3, 1, 1, 2))
SuppressDirectDisclosure(tex, c("v1", "v2", "v3"), "freq")
SuppressDirectDisclosure(tex, c("v1", "v2", "v3"), "freq", coalition = 2, unknown.threshold = 10)

SuppressionFromDecimals

Cell suppression from synthetic decimal numbers

Description

Decimal numbers, as calculated by GaussSuppressDec, are used to decide suppression (whole numbers or not). Technically, the calculations are done via GaussSuppressionFromData, but without running GaussSuppression. All suppressed cells are primary suppressed.
SuppressionFromDecimals

Usage

SuppressionFromDecimals(
 data,
 decVar,
 freqVar = NULL,
 numVar = NULL,
 preAggregate = FALSE,
 digits = 9,
 ...
)

Arguments

data Input data as a data frame
decVar One ore several (nRep>1) decimal number variables.
freqVar A single variable holding counts (not needed)
numVar Other numerical variables to be aggregated
preAggregate Parameter to GaussSuppressionFromData
digits Parameter to RoundWhole. Values close to whole numbers will be rounded.
...

Details

Several decimal number variables reduce the probability of obtaining whole numbers by chance.

Value

Aggregated data with suppression information

Author(s)

Øyvind Langsrud

Examples

z2 <- SSBtoolsData("z2")

Find suppression and decimal numbers with "fylke" in model
a <- GaussSuppressDec(z2, dimVar = c("region", "fylke", "hovedint"),
 freqVar = "ant", protectZeros = FALSE, maxN = 2,
 output = "inner")

Add decimal numbers to data
z2$freqDec <- a$freqDec

Find suppression with "kostragr" in model
b <- SuppressionFromDecimals(z2, dimVar = c("region", "kostragr", "hovedint"),
 freqVar = "ant", decVar = "freqDec")
Index

AutoHierarchies, 5
CandidatesDefault, 5
DominanceRule, 2
FindDisclosiveCells, 10, 11
GaussSuppressDec, 3, 11
GaussSuppression, 4, 6, 11
GaussSuppressionFromData, 3, 4, 10–12
MaxContribution, 7
Mipf, 3, 4
ModelMatrix, 6, 8, 9
Ncontributors, 8, 9, 10
NcontributorsHolding, 9
PrimaryDefault, 5
RoundWhole, 3, 4, 12
SingletonDefault, 6
SuppressDec, 3
SuppressDirectDisclosure, 10
SuppressionFromDecimals, 11