Package ‘GiRaF’

October 14, 2020

Type Package
Title Gibbs Random Fields Analysis
Version 1.0.1
Date 2016-02-13
Author Julien Stoehr, Pierre Pudlo and Nial Friel
Maintainer Julien Stoehr <julien.stoehr@ucd.ie>
Description Allows calculation on, and
sampling from Gibbs Random Fields, and more precisely general
homogeneous Potts model. The primary tool is the exact computation of
the intractable normalising constant for small rectangular lattices.
Beside the latter function, it contains method that give exact sample from the likelihood
for small enough rectangular lattices or approximate sample from the
likelihood using MCMC samplers for large lattices.
License GPL (>= 2)
Imports methods, Rcpp (>= 0.12.3)
LinkingTo Rcpp, RcppArmadillo, BH
Suggests knitr
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2020-10-14 16:34:25 UTC

R topics documented:

GiRaF-package .. 2
exact.mrf ... 4
NC.mrf .. 6
sampler.mrf ... 7

Index 10
Description

GiRaF is a package for calculations on, and sampling from Gibbs (or discrete Markov) random fields.

Details

GiRaF offers various tools for the analysis of Gibbs random fields and more precisely general homogeneous Potts model with possible anisotropy and potential on singletons (cliques composed of single vertex). GiRaF substantially lowers the barrier for practitioners aiming at analysing such Gibbs random fields. GiRaF contains exact methods for small lattices and several approximate methods for larger lattices that make the analysis easier for practitioners.

The “GiRaF-introduction” vignette gives a detailed introduction on the package.

For a complete list of functions, use library(help = "GiRaF").

Author(s)

Julien Stoehr, Pierre Pudlo and Nial Friel.

Maintainer: Julien Stoehr <julien.stoehr@ucd.ie>

References

See Also

The “GiRaF-introduction” vignette

Examples

```r
# Dimension of the lattice
height <- 8
width <- 10

# Interaction parameter
```
Beta <- 0.6 # Isotropic configuration
Beta <- c(0.6, 0.6) # Anisotropic configuration when nei = 4
Beta <- c(0.6, 0.6, 0.6, 0.6) # Anisotropic configuration when nei = 8

Number of colors
K <- 2
Number of neighbors
G <- 4

Optional potential on sites
potential <- runif(K,-1,1)
Optional borders.
Top <- Bottom <- sample(0:(K-1), width, replace = TRUE)
Left <- Right <- sample(0:(K-1), height, replace = TRUE)
Corner <- sample(0:(K-1), 4, replace = TRUE)

Partition function for the default setting
NC.mrf(h = height, w = width, param = Beta)

When specifying the number of colors and neighbors
NC.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta)

When specifying an optional potential on sites
NC.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, pot = potential)

When specifying possible borders. The users will omit to mention all
the non-existing borders
NC.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, top = Top, left = Left, bottom = Bottom, right = Right, corner = Corner)

Exact sampling for the default setting
exact.mrf(h = height, w = width, param = Beta, view = TRUE)

When specifying the number of colors and neighbors
exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, view = TRUE)

When specifying an optional potential on sites
exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, pot = potential, view = TRUE)

When specifying possible borders. The users will omit to mention all
the non-existing borders
exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, top = Top, left = Left, bottom = Bottom, right = Right, corner = Corner, view = TRUE)

Algorithm settings
n <- 200
method <- "Gibbs"

Sampling method for the default setting
sampler.mrf(iter = n, sampler = method, h = height, w = width,
param = Beta, view = TRUE)

Sampling using an existing configuration as starting point
sampler.mrf(iter = n, sampler = method, h = height, w = width,
ncolors = K, nei = G, param = Beta,
initialise = FALSE, view = TRUE)

Specifying optional arguments. The users may omit to mention all
the non-existing borders
sampler.mrf(iter = n, sampler = method, h = height, w = width,
ncolors = K, nei = G, param = Beta,
pot = potential, top = Top, left = Left, bottom = Bottom,
right = Right, corner = Corner, view = TRUE)

Gibbs sampler with sequential updates of the sites.
sampler.mrf(iter = n, sampler = "Gibbs", h = height, w = width,
ncolors = K, nei = G, param = Beta,
random = FALSE, view = TRUE)

exact.mrf

Exact sampler for Gibbs Random Fields

Description

exact.mrf gives exact sample from the likelihood of a general Potts model defined on a rectangular
$h \times w$ lattice ($h \leq w$) with either a first order or a second order dependency structure and a small
number of rows (up to 19 for 2-state models).

Usage

```r
exact.mrf(h, w, param, ncolors = 2, nei = 4,
pot = NULL, top = NULL, left = NULL,
bottom = NULL, right = NULL, corner = NULL, view = FALSE)
```

Arguments

- **h**
 - the number of rows of the rectangular lattice.
- **w**
 - the number of columns of the rectangular lattice.
- **param**
 - numeric entry setting the interaction parameter (edges parameter)
- **ncolors**
 - the number of states for the discrete random variables. By default, ncolors = 2.
- **nei**
 - the number of neighbors. The latter must be one of nei = 4 or nei = 8, which respectivelly correspond to a first order and a second order dependency structure. By default, nei = 4.
- **pot**
 - numeric entry setting homogeneous potential on singletons (vertices parameter). By default, pot = NULL
- **top, left, bottom, right, corner**
 - numeric entry setting constant borders for the lattice. By default, top = NULL, left = NULL, bottom = NULL, right = NULL, corner = NULL.
view Logical value indicating whether the draw should be printed. Do not display the optional borders.

References

See Also

The “GiRaF-introduction” vignette

Examples

Dimension of the lattice
height <- 8
width <- 10

Interaction parameter
Beta <- 0.6 # Isotropic configuration
Beta <- c(0.6, 0.6) # Anisotropic configuration when nei = 4
Beta <- c(0.6, 0.6, 0.6, 0.6) # Anisotropic configuration when nei = 8

Number of colors
K <- 2
Number of neighbors
G <- 4

Optional potential on sites
potential <- runif(K,-1,1)
Optional borders.
Top <- Bottom <- sample(0:(K-1), width, replace = TRUE)
Left <- Right <- sample(0:(K-1), height, replace = TRUE)
Corner <- sample(0:(K-1), 4, replace = TRUE)

Exact sampling for the default setting
exact.mrf(h = height, w = width, param = Beta, view = TRUE)

When specifying the number of colors and neighbors
exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, view = TRUE)

When specifying an optional potential on sites
exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, pot = potential, view = TRUE)

When specifying possible borders. The users will omit to mention all # the non-existing borders
exact.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, top = Top, left = Left, bottom = Bottom, right = Right, corner = Corner, view = TRUE)
Normalising constant of a Gibbs Random Field

Description

Partition function of a general Potts model defined on a rectangular $h \times w$ lattice ($h \leq w$) with either a first order or a second order dependency structure and a small number of rows (up to 25 for 2-state models).

Usage

```r
NC.mrf(h, w, param, ncolors = 2, nei = 4,
       pot = NULL, top = NULL, left = NULL,
       bottom = NULL, right = NULL, corner = NULL)
```

Arguments

- `h`: the number of rows of the rectangular lattice.
- `w`: the number of columns of the rectangular lattice.
- `param`: numeric entry setting the interaction parameter (edges parameter).
- `ncolors`: the number of states for the discrete random variables. By default, ncolors = 2.
- `nei`: the number of neighbors. The latter must be one of nei = 4 or nei = 8, which respectively correspond to a first order and a second order dependency structure. By default, nei = 4.
- `pot`: numeric entry setting homogeneous potential on singletons (vertices parameter). By default, pot = NULL.
- `top`, `left`, `bottom`, `right`, `corner`: numeric entry setting constant borders for the lattice. By default, top = NULL, left = NULL, bottom = NULL, right = NULL, corner = NULL.

References

See Also

The “GiRaF-introduction” vignette
sampler.mrf

Examples

Dimension of the lattice
height <- 8
width <- 10

Interaction parameter
Beta <- 0.6 # Isotropic configuration
Beta <- c(0.6, 0.6) # Anisotropic configuration when nei = 4
Beta <- c(0.6, 0.6, 0.6, 0.6) # Anisotropic configuration when nei = 8

Number of colors
K <- 2
Number of neighbors
G <- 4

Optional potential on sites
potential <- runif(K,-1,1)
Optional borders.
Top <- Bottom <- sample(0:(K-1), width, replace = TRUE)
Left <- Right <- sample(0:(K-1), height, replace = TRUE)
Corner <- sample(0:(K-1), 4, replace = TRUE)

Partition function for the default setting
NC.mrf(h = height, w = width, param = Beta)

When specifying the number of colors and neighbors
NC.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta)

When specifying an optional potential on sites
NC.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta, pot = potential)

When specifying possible borders. The users will omit to mention all
the non-existing borders
NC.mrf(h = height, w = width, ncolors = K, nei = G, param = Beta,
 top = Top, left = Left, bottom = Bottom, right = Right, corner = Corner)

sampler.mrf MCMC samplers for Gibbs Random Fields

Description

sampler.mrf gives approximate sample from the likelihood of a general Potts model defined on a
rectangular hxw lattice ($h \leq w$) with either a first order or a second order dependency structure.
Available options are the Gibbs sampler (Geman and Geman (1984)) and the
Swendsen-Wang algorithm (Swendsen and Wang (1987)).
sampler.mrf

Usage

```r
sampler.mrf(iter, sampler = "Gibbs", h, w,
            param, ncolors = 2, nei = 4, pot = NULL,
            top = NULL, left = NULL, bottom = NULL, right = NULL,
            corner = NULL, initialise = TRUE, random = TRUE, view = FALSE)
```

Arguments

- **iter**: Number of iterations of the algorithm.
- **sampler**: The method to be used. The latter must be one of "Gibbs" or "SW" corresponding respectively to the Gibbs sampler and the Swendsen-Wang algorithm.
- **h**: the number of rows of the rectangular lattice.
- **w**: the number of columns of the rectangular lattice.
- **param**: numeric entry setting the interaction parameter (edges parameter)
- **ncolors**: the number of states for the discrete random variables. By default, ncolors = 2.
- **nei**: the number of neighbors. The latter must be one of nei = 4 or nei = 8, which respectively correspond to a first order and a second order dependency structure. By default, nei = 4.
- **pot**: numeric entry setting homogeneous potential on singletons (vertices parameter). By default, pot = NULL
- **top, left, bottom, right, corner**: numeric entry setting constant borders for the lattice. By default, top = NULL, left = NULL, bottom = NULL, right = NULL, corner = NULL.
- **initialise**: Logical value indicating whether initial guess should be randomly drawn.
- **random**: Logical value indicating whether the sites should be updated sequentially or randomly. Used only with the "Gibbs" option.
- **view**: Logical value indicating whether the draw should be printed. Do not display the optional borders.

References

See Also

The “GiRaF-introduction” vignette
Examples

```r
# Algorithm settings
n <- 200
method <- "Gibbs"

# Dimension of the lattice
height <- width <- 100

# Interaction parameter
Beta <- 0.6 # Isotropic configuration
# Beta <- c(0.6, 0.6) # Anisotropic configuration when nei = 4
# Beta <- c(0.6, 0.6, 0.6, 0.6) # Anisotropic configuration when nei = 8

# Number of colors
K <- 2
# Number of neighbors
G <- 4

# Optional potential on sites
potential <- runif(K,-1,1)
# Optional borders.
Top <- Bottom <- sample(0:(K-1), width, replace = TRUE)
Left <- Right <- sample(0:(K-1), height, replace = TRUE)
Corner <- sample(0:(K-1), 4, replace = TRUE)

# Sampling method for the default setting
sampler.mrf(iter = n, sampler = method, h = height, w = width,
             param = Beta, view = TRUE)

# Sampling using an existing configuration as starting point
sampler.mrf(iter = n, sampler = method, h = height, w = width,
             ncolors = K, nei = G, param = Beta,
             initialise = FALSE, view = TRUE)

# Specifying optional arguments. The users may omit to mention all
# the non-existing borders
sampler.mrf(iter = n, sampler = method, h = height, w = width,
             ncolors = K, nei = G, param = Beta,
             pot = potential, top = Top, left = Left, bottom = Bottom,
             right = Right, corner = Corner, view = TRUE)

# Gibbs sampler with sequential updates of the sites.
sampler.mrf(iter = n, sampler = "Gibbs", h = height, w = width,
             ncolors = K, nei = G, param = Beta,
             random = FALSE, view = TRUE)
```
Index

* gibbs
 GiRaF-package, 2
* mrf
 GiRaF-package, 2
* potts
 GiRaF-package, 2

exact.mrf, 4

GiRaF (GiRaF-package), 2
GiRaF-package, 2

NC.mrf, 6

sampler.mrf, 7