Package ‘HMMEsolver’

January 5, 2019

Type Package
Title A Fast Solver for Henderson Mixed Model Equation via Row Operations
Version 0.1.2
Description Consider the linear mixed model with normal random effects. A typical method to solve Henderson’s Mixed Model Equations (HMME) is recursive estimation of the fixed effects and random effects. We provide a fast, stable, and scalable solver to the HMME without computing matrix inverse. See Kim (2017) <arXiv:1710.09663> for more details.
License GPL (>= 3)
Encoding UTF-8
LazyData true
Imports Rcpp, Rdpack
LinkingTo Rcpp, RcppArmadillo
RdMacros Rdpack
RoxygenNote 6.1.1
NeedsCompilation yes
Author Jiwoong Kim [aut, cre]
Maintainer Jiwoong Kim <jwboys26@gmail.com>
Repository CRAN
Date/Publication 2019-01-05 00:40:03 UTC

R topics documented:

HMMEsolver-package .. 2
SolveHMME .. 2

Index 4
HMMESolver-package
HMMEsolver Package

Description
Consider the linear mixed model with normal random effects,

\[Y = X\beta + Zv + \epsilon \]

where \(\beta \) and \(v \) are vectors of fixed and random effects. One of the most popular methods to solve the Henderson’s Mixed Model Equation related to the problem is EM-type algorithm. Its drawback, however, comes from repetitive matrix inversion during recursive estimation steps. Kim (2017) proposed a novel method of avoiding such difficulty, letting the estimation more fast, stable, and scalable.

SolveHMME
Solve Henderson’s Mixed Model Equation.

Description
Consider a linear mixed model with normal random effects,

\[Y_{ij} = X_{ij}^T\beta + v_i + \epsilon_{ij} \]

where \(i = 1, \ldots, n, \quad j = 1, \ldots, m \), or it can be equivalently expressed using matrix notation,

\[Y = X\beta + Zv + \epsilon \]

where \(Y \in \mathbb{R}^{nm} \) is a known vector of observations, \(X \in \mathbb{R}^{nm \times p} \) and \(Z \in \mathbb{R}^{nm \times n} \) design matrices for \(\beta \) and \(v \) respectively, \(\beta \in \mathbb{R}^p \) and \(v \in \mathbb{R}^n \) unknown vectors of fixed effects and random effects where \(v_i \sim N(0, \lambda_i) \), and \(\epsilon \in \mathbb{R}^{nm} \) an unknown vector random errors independent of random effects. Note that \(Z \) does not need to be provided by a user since it is automatically created accordingly to the problem specification.

Usage
SolveHMME(X, Y, Mu, Lambda)

Arguments
- \(X \) an \((nm \times p)\) design matrix for \(\beta \).
- \(Y \) a length-\(nm \) vector of observations.
- \(Mu \) a length-\(nm \) vector of initial values for \(\mu_i = E(Y_i) \).
- \(Lambda \) a length-\(n \) vector of initial values for \(\lambda \), variance of \(v_i \sim N(0, \lambda_i) \).
Value

- beta: a length-\(p \) vector of BLUE \(\beta_{\hat{a}} \).
- v: a length-\(n \) vector of BLUP \(\hat{v} \).
- leverage: a length-\((mn + n)\) vector of leverages.

References

Examples

```r
## small setting for data generation
n = 100; m = 2; p = 2
nm = n*m; nmp = n*m*p

## generate artificial data
X = matrix(rnorm(nmp, 2), nm, p) # design matrix
Y = rnorm(nm, 2, 1) # observation
Mu = rep(1, times=nm)
Lambda = rep(1, times=n)

## solve
ans = SolveHMME(X, Y, Mu, Lambda)
```
Index

HMMEsolver-package, 2
SolveHMME, 2