Package ‘HSAR’

June 28, 2020

Type Package

Title Hierarchical Spatial Autoregressive Model

Version 0.5.1

Date 2020-6-1

Author Guanpeng Dong, Richard Harris, Angelos Mimis

Maintainer Angelos Mimis <mimis@panteion.gr>

Description A Hierarchical Spatial Autoregressive Model (HSAR), based on a Bayesian Markov Chain Monte Carlo (MCMC) algorithm (Dong and Harris (2014) <doi:10.1111/gean.12049>). The creation of this package was supported by the Economic and Social Research Council (ESRC) through the Applied Quantitative Methods Network: Phase II, grant number ES/K006460/1.

License GPL (>= 2)

Depends R (>= 3.5.0)

Imports spdep, spatialreg, Rcpp

LinkingTo Rcpp, RcppArmadillo

Suggests sf, tidyverse, sp, maptools, rgdal, rgeos, RColorBrewer, classInt, markdown, knitr

VignetteBuilder knitr

NeedsCompilation yes

Repository CRAN

RoxygenNote 7.1.0

Date/Publication 2020-06-27 23:50:02 UTC

R topics documented:

 HSAR-package ... 2
 Beijingdistricts 3
 depmunic ... 4
 hsr .. 5
 landprice ... 9
HSAR-package

LandSPDF 10
properties 11
sar 12
summary.mcmc_hsar 14
summary.mcmc_hsar_lambda_0 15
summary.mcmc_hsar_rho_0 16
summary.mcmc_sar 16

Index 18

HSAR-package Hierarchical Spatial Autoregressive Model

Description

Implements a Hierarchical Spatial Simultaneous Autoregressive Model (HSAR) or a multi-scale spatial econometrics model, with inference in a Bayesian setting using Markov chain Monte Carlo (MCMC) simulation. The approach is developed for modeling geographic data with a hierarchical/nested structure, for example, houses nesting into districts or fine-grained spatial units into more aggregated units. The HSAR model brings together the spatial econometrics and multilevel models and thus suitable for a simultaneous capturing the potential spatial dependence (autocorrelations) at each level of the data hierarchy arising from geographical proximity effect and the contextual effect (or group dependence effect) from higher-level units upon lower-level units. The creation of this package was supported by the Economic and Social Research Council (ESRC) through the Applied Quantitative Methods Network: Phase II, grant number ES/K006460/1.

Details

Package: HSAR
Type: Package
Version: 0.5
Date: 2020-6-1
License: GPL (>= 2)

Author(s)

Guanpeng Dong, Richard Harris, Angelos Mimis < mimis@panteion.gr>

References

Beijingdistricts

Beijingdistricts
Boundaries of districts (SpatialPolygonsDataFrame) in Beijing

Description

The geographic boundaries of districts (SpatialPolygonsDataFrame) in Beijing. This is only a subset of districts in Beijing where our land parcel samples fall into.

Usage

```r
data(Beijingdistricts)
```

See Also

`landprice`, `landSPDF`

Examples

```r
data(Beijingdistricts)
library(spdep)
plot(Beijingdistricts,border="light grey")
# extract the area of each district
library(rgeos)
library(classInt)
library(RColorBrewer)

Beijingdistricts$geo.area <- gArea(Beijingdistricts,byid=TRUE) / 1000000
x <- Beijingdistricts$geo.area
breaks <- classIntervals(x,4,"fisher")$brks
groups <- cut(x,breaks,include.lowest=TRUE,labels=FALSE)
palette <- brewer.pal(4, "Blues")
plot(Beijingdistricts,col=palette[groups],border="grey")

# extract the district level spatial weights matrix
nb.list <- spdep::poly2nb(Beijingdistricts,queen=FALSE)
mat.list <- spdep::nb2mat(nb.list,style="W")
M <- as(mat.list,"dgCMatrix")
```
Description

The geographic boundaries of departments (sf) of the municipality of Athens. This is accompanied by various characteristics in these areas.

Usage

```r
data(depmunic)
```

Format

An sf object of 7 polygons with the following 7 variables.

- **num_dep** An unique identifier for each municipality department.
- **airbnb** The number of airbnb properties in 2017
- **museums** The number of museums
- **population** The population recorded in census at 2011.
- **pop_rest** The number of citizens that the origin is a non european country.
- **greensp** The area of green spaces (unit: square meters).
- **area** The area of the polygon (unit: square kilometers).

See Also

- `properties`

Examples

```r
library(sf)
data(depmunic)

depmunic$foreigners <- 100*depmunic$pop_rest/depmunic$population
plot(depmunic["foreigners"], key.pos=1)
```
Hierarchical SAR model estimation

Description

The specification of a HSAR model is as follows:

\[y_{i,j} = \rho \ast W_{i} \ast y_{i,j} + x'_{i,j} \ast \beta + z'_{j} \ast \gamma + \theta_{j} + \epsilon_{i,j} \]

\[\theta_{j} = \lambda \ast M_{j} \ast \theta + \mu_{j} \]

\[\epsilon_{i,j} \sim N(0, \sigma^{2}_{e}), \quad \mu_{j} \sim N(0, \sigma^{2}_{u}) \]

where \(i = 1, 2, ..., n_{j} \) and \(j = 1, 2, ..., J \) are indicators of lower- and higher-level spatial units. \(n_{j} \) is the number of lower-level units in the \(j - th \) higher level unit and \(\sum_{j=1}^{J} = N \). \(x'_{i,j} \) and \(z'_{j} \) represent vectors of lower- and higher-level independent variables. \(\beta \) and \(\gamma \) are regression coefficients to estimate. \(\theta \), a \(N \times J \) vector of higher-level random effects, also follows a simultaneous autoregressive process. \(W \) and \(M \) are two spatial weights matrices (or neighbourhood connection matrices) at the lower and higher levels, defining how spatial units at each level are connected. \(\rho \) and \(\lambda \) are two spatial autoregressive parameters measuring the strength of the dependencies/correlations at the two spatial scales.

A succinct matrix formulation of the model is,

\[y = \rho \ast W \ast y + X \ast \beta + Z \ast \gamma + \Delta \ast \theta + \epsilon \]

\[\theta = \lambda \ast M \ast \theta + \mu \]

It is also useful to note that the HSAR model nests a standard (random intercept) multilevel model model when \(\rho \) and \(\lambda \) are both equal to zero and a standard spatial econometric model when \(\lambda \) and \(\sigma^{2}_{u} \) are both equal to zero.

Usage

```r
hsar(formula, data = NULL, W=NULL, M=NULL, Delta, burnin=5000, Nsim=10000, thinning = 1, parameters.start = NULL)
```

Arguments

- **formula**: A symbolic description of the model to fit. A formula for the covariate part of the model using the syntax of the `lm()` function fitting standard linear regression models. Neither the response variable nor the explanatory variables are allowed to contain NA values.
- **data**: A data frame containing variables used in the formula object.
The N by N lower-level spatial weights matrix or neighbourhood matrix where N is the total number of lower-level spatial units. The formulation of W could be based on geographical distances separating units or based on geographical contiguity. To ensure the maximum value of the spatial autoregressive parameter ρ less than 1, W should be row-normalised before running the HSAR model. As in most cases, spatial weights matrix is very sparse, therefore W here should be converted to a sparse matrix before imported into the hsar() function to save computational burden and reduce computing time. More specifically, W should be a column-oriented numeric sparse matrices of a dgCMatrix class defined in the Matrix package. The conversion between a dense numeric matrix and a sparse numeric matrix is made quite convenient through the Matrix library.

The J by J higher-level spatial weights matrix or neighbourhood matrix where J is the total number of higher-level spatial units. Similar with W, the formulation of M could be based on geographical distances separating units or based on geographical contiguity. To ensure the maximum value of the spatial autoregressive parameter λ less than 1, M is also row-normalised before running the HSAR model. As with W, M should also be a column-oriented numeric sparse matrices.

The N by J random effect design matrix that links the J by 1 higher-level random effect vector back to the N by 1 response variable under investigation. It is simply how lower-level units are grouped into each high-level units with columns of the matrix being each higher-level units. As with W and M, δ should also be a column-oriented numeric sparse matrices.

The number of MCMC samples to discard as the burnin period.

The total number of MCMC samples to generate.

MCMC thinning factor.

A list with names "rho", "lambda", "sigma2e", "sigma2u" and "beta" corresponding to initial values for the model parameters ρ, λ, σ^2_e, σ^2_u and the regression coefficients respectively.

In order to use the hsar() function, users need to specify the two spatial weights matrices W and M and the random effect design matrix δ. However, it is very easy to extract such spatial weights matrices from spatial data using the package spdep. Geographic distance-based or contiguity-based spatial weights matrix for both spatial points data and spatial polygons data are available in the spdep package.

Before the extraction of W and M, it is better to first sort the data using the higher-level unit identifier. Then, the random effect design matrix can be extracted simply (see the following example) and so are the two spatial weights matrices. Make sure the order of higher-level units in the weights matrix M is in line with that in the δ matrix.

Two simpler versions of the HSAR model can also be fitted using the hsar() function. The first is a HSAR model with λ equal to zero, indicating an assumption of independence in the higher-level random effect θ. The second is a HSAR with ρ equal to zero, indicating an independence assumption in the outcome variable conditioning on the higher-level random effect. This model is
useful in situations where we are interested in the neighbourhood/contextual effect on individual’s outcomes and have good reasons to suspect the effect from geographical contexts upon individuals to be dependent. Meanwhile we have no information on how lower-level units are connected.

Value

A list object containing:

- `cbetas`: A matrix with the MCMC samples of the draws for the coefficients.
- `Mbetas`: A vector of estimated mean values of regression coefficients.
- `SDbetas`: The standard deviations of estimated regression coefficients.
- `Mrho`: The estimated mean of the lower-level spatial autoregressive parameter ρ.
- `SDrho`: The standard deviation of the estimated lower-level spatial autoregressive parameter.
- `Mlamba`: The estimated mean of the higher-level spatial autoregressive parameter λ.
- `SDlambda`: The standard deviation of the estimated higher-level spatial autoregressive parameter.
- `Msigma2e`: The estimated mean of the lower-level variance parameter σ^2_e.
- `SDsigma2e`: The standard deviation of the estimated lower-level variance parameter σ^2_e.
- `Msigma2u`: The estimated mean of the higher-level variance parameter σ^2_u.
- `SDsigma2u`: The standard deviation of the estimated higher-level variance parameter σ^2_u.
- `Mus`: Mean values of θ
- `SDus`: Standard deviation of θ
- `DIC`: The deviance information criterion (DIC) of the fitted model.
- `pd`: The effective number of parameters of the fitted model.
- `Log_Likelihood`: The log-likelihood of the fitted model.
- `R_Squared`: A pseudo R square model fit indicator.
- `impact_direct`: Summaries of the direct impact of a covariate effect on the outcome variable.
- `impact_indirect`: Summaries of the indirect impact of a covariate effect on the outcome variable.
- `impact_total`: Summaries of the total impact of a covariate effect on the outcome variable.

Author(s)

Guanpeng Dong, Richard Harris, Angelos Mimis <mimis@panteion.gr>

References

See Also

sar, landprice, Beijingdistricts, landSPDF

Examples

library(spdep)

Running the hsar() function using the Beijing land price data
data(landprice)

load shapefiles of Beijing districts and land parcels
data(Beijingdistricts)
data(landSPDF)

plot(Beijingdistricts, border = "green")
plot(landSPDF, add = TRUE, col = "red", pch = 16, cex = 0.8)

Define the random effect matrix
model.data <- landprice[order(landprice$district.id),]
head(model.data, 50)

the number of individuals within each neighbourhood
MM <- as.data.frame(table(model.data$district.id))
the total number of neighbourhood, 100
Utotal <- dim(MM)[1]
Unum <- MM[,2]
Uid <- rep(c(1:Utotal), Unum)

n <- nrow(model.data)
Delta <- matrix(0, nrow = n, ncol = Utotal)
for (i in 1:Utotal) {
 Delta[Uid == i, i] <- 1
}

Delta[1:50,1:10]
Delta <- as(Delta, "dgCMatrix")

extract the district level spatial weights matrix using the queen's rule
nb.list <- spdep::poly2nb(Beijingdistricts)
mat.list <- spdep::nb2mat(nb.list, style = "W")
M <- as(mat.list, "dgCMatrix")

extract the land parcel level spatial weights matrix
nb.25 <- spdep::dnearneigh(landSPDF, 0, 2500)
to a weights matrix
dist.25 <- spdep::nbdist(nb.25, landSPDF)
dist.25 <- lapply(dist.25, function(x) exp(-0.5 * (x / 2500)^2))
mat.25 <- spdep::nb2mat(nb.25, glist = dist.25, style = "W")
W <- as(mat.25, "dgCMatrix")

run the hsar() function
landprice

res.formula <- lnprice ~ lnarea + lndcbd + dsubway + dpark + dele + popden + crimerate + as.factor(year)

betas= coef(lm(formula=res.formula,data=landprice))
pars=list(rho = 0.5,lambda = 0.5, sigma2e = 2.0, sigma2u = 2.0, betas = betas)

Not run:
res <- hsar(res.formula,data=model.data,W=W,M=M,Delta=Delta, burnin=500, Nsim=1000, thinning = 1, parameters.start=pars)
summary(res)

visualise the district level random effect
library(classInt)
library(RColorBrewer)
x <- as.numeric(res$Mus)
breaks <- classIntervals(x,4,"fisher")$brks
groups <- cut(x,breaks,include.lowest=TRUE,labels=FALSE)
palette <- brewer.pal(4, "Blues")
plot(Beijingdistricts,col=palette[groups],border="grey")

End(Not run)

landprice Leased residential land parcels, from 2003 to 2009 in Beijing, China

Description
The residential land parcel data leased to real estate developers from the government during 2003 to 2009. The data contains price information and a range of locational and neighbourhood characteristics for each land parcel. There are 1117 samples in the data after dropping those without price information.

Usage
data(landprice)

Format
A data frame with 1117 observations on the following 11 variables.

 obs An unique identifier for each land parcel.
 lnprice The log of the leasing price per square metre of each residential land parcel (unit: RMB, Chinese yuan)
 dsubway The log of the distance of each land parcel to the nearest railway station (unit:meters)
 dele The log of the distance of each land parcel to the nearest elementary school (unit:meters)
 dpark The log of the distance of each land parcel to the nearest green park (unit:meters)
 lnarea The log of the size of each land parcel (unit: square meters).
landSPDF

The log of the distance of each land parcel to the CBD (centre business district) in Beijing (unit: meters)

year The year when each land parcel was leased with values of 0,1,2,3,4,5,6 representing year 2003,2004,2005,2006,2007,2008,2009

popden The population density of each district (unit: 1000 persons per square kilometers)

crimerate The number of reported serious crimes committed in each district per 1000 persons.

district.id The identifier of the district where each land parcel is located.

References

See Also

Beijingdistricts, landSPDF

Examples

```r
data(landprice)
head(landprice)
```

landSPDF

Beijing land price data

Description

The spatial locations (SpatialPointsDataFrame) of the Beijing land price data. It is used to extract the spatial weights matrix among land parcels.

Usage

```r
data(landSPDF)
```

See Also

landprice, Beijingdistricts
Examples

```r
data(landSPDF)
library(spdep)
plot(landSPDF,col="red",pch=16,cex=0.7)

data(landprice)
library(classInt)
library(RColorBrewer)

# link the variables in the landprice to the spatial data
index.match <- match(landSPDF$obs,landprice$obs)
landSPDF@data <- data.frame(landSPDF@data,landprice[index.match,])

par(mar=c(0,0,0,0))
x <- landSPDF$lnprice
breaks <- classIntervals(x,4,"fisher")$brks
groups <- cut(x,breaks,include.lowest=TRUE,labels=FALSE)
palette <- brewer.pal(4, "Blues")
plot(landSPDF,pch=19,col=palette[groups],cex=0.8)

# extract a spatial weights matrix based on the distances between pairs of land parcels
nb.25 <- spdep::dnearneigh(landSPDF,0,2500)
# to a weights matrix
dist.25 <- spdep::nbdists(nb.25,landSPDF)
mat.25 <- spdep::nb2mat(nb.25,glist=dist.25,style="W")
W <- as(mat.25,"dgCMatrix")
```

Properties

Dataset of properties in the municipality of Athens (sf)

Description

A dataset of apartments in the municipality of Athens for 2017. Point location of the properties is given together with their main characteristics and the distance to the closest metro/train station.

Usage

data(properties)

Format

An sf object of 1000 points with the following 6 variables.

- **id**: An unique identifier for each property.
- **size**: The size of the property (unit: square meters)
- **price**: The asking price (unit: euros)
srpsqm The asking price per square meter (unit: euros/square meter).

age Age of property in 2017 (unit: years).

dist_metro The distance to closest train/metro station (unit: meters).

See Also

depmunic

Examples

```r
library(sf)
library(spdep)

data(properties)

summary(properties$srpsqm)

pr.nb.800 <- dneareigh(properties, 0, 800)
pr.listw <- nb2listw(pr.nb.800)

moran.test(properties$srpsqm, pr.listw)
moran.plot(properties$srpsqm, pr.listw, xlab="Price/m^2", ylab = "Lagged")
```

sar *SAR model estimation*

Description

The `sar()` function implements a standard spatial econometrics model (SAR) or a spatially lagged dependent variable model using the Markov chain Monte Carlo (McMC) simulation approach.

Usage

```r
sar( formula, data = NULL, W, burnin=5000, Nsim=10000, 
    thinning=1, parameters.start = NULL )
```

Arguments

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>formula</code></td>
<td>A symbolic description of the model to fit. A formula for the covariate part of the model using the syntax of the <code>lm()</code> function fitting standard linear regression models. Neither the response variable nor the explanatory variables are allowed to contain NA values.</td>
</tr>
<tr>
<td><code>data</code></td>
<td>A data frame containing variables used in the formula object.</td>
</tr>
</tbody>
</table>
The N by N spatial weights matrix or neighbourhood matrix where N is the number of spatial units. The formulation of W could be based on geographical distances separating units or based on geographical contiguity. To ensure the maximum value of the spatial autoregressive parameter ρ less than 1, W is usually row-normalised before implementing the SAR model. As in most cases, spatial weights matrix is very sparse, therefore W here should be converted to a sparse matrix before imported into the sar() function to save computational burden and reduce computing time. More specifically, W should be a column-oriented numeric sparse matrices of a dgCMatrix class defined in the Matrix package. The conversion between a dense numeric matrix and a sparse numeric matrix is made quite convenient through the Matrix library.

burnin
The number of McMC samples to discard as the burnin period.

Nsim
The total number of McMC samples to generate.

thinning
MCMC thinning factor.

parameters.start
A list with names "rho", "sigma2e", and "beta" corresponding to initial values for the model parameters ρ, σ^2_e and the regression coefficients respectively.

Value
A list object containing:

- **cbetas**
 A matrix with the MCMC samples of the draws for the coefficients.

- **Mbetas**
 A vector of estimated mean values of regression coefficients.

- **SDbetas**
 The standard deviations of estimated regression coefficients.

- **Mrho**
 The estimated mean of the lower-level spatial autoregressive parameter ρ.

- **SDrho**
 The standard deviation of the estimated lower-level spatial autoregressive parameter.

- **Msigma2e**
 The estimated mean of the lower-level variance parameter σ^2_e.

- **SDsigma2e**
 The standard deviation of the estimated lower-level variance parameter σ^2_e.

- **DIC**
 The deviance information criterion (DIC) of the fitted model.

- **pd**
 The effective number of parameters of the fitted model.

- **Log_Likelihood**
 The log-likelihood of the fitted model.

- **R_Squared**
 A pseudo R square model fit indicator.

- **impact_direct**
 Summaries of the direct impact of a covariate effect on the outcome variable.

- **impact_idirect**
 Summaries of the indirect impact of a covariate effect on the outcome variable.

- **impact_total**
 Summaries of the total impact of a covariate effect on the outcome variable.

Author(s)
Guanpeng Dong, Richard Harris, Angelos Mimis <mimis@panteion.gr>
References

See Also

hsar, landprice, Beijingdistricts, landSPDF

Examples

data(landprice)
head(landprice)

data(landSPDF)

extract the land parcel level spatial weights matrix
library(spdep)

nb.25 <- spdep::dnearneigh(landSPDF, 0, 2500)
to a weights matrix
dist.25 <- spdep::nbdists(nb.25, landSPDF)
dist.25 <- lapply(dist.25, function(x) exp(-0.5 * (x / 2500)^2))
mat.25 <- spdep::nb2mat(nb.25, glist = dist.25, style = "W")
W <- as(mat.25, "dgCMatrix")

run the sar() function
res.formula <- lnprice ~ lnarea + lncbd + ds subway + dpark + dele +
popden + crimerate + as.factor(year)
betas = coef(lm(formula = res.formula, data = landprice))
pars = list(rho = 0.5, sigma2e = 2.0, betas = betas)

Not run:
res <- sar(res.formula, data = landprice, W = W,
burnin = 500, Nsim = 1000, thinning = 1, parameters.start = pars)
summary(res)

End(Not run)

summary.mcmc_hsar

summary method for class mcmc_hsar

Description

Methods for presenting the result of a fitted HSAR model.
summary.mcmc_hsar_lambda_0

Usage
S3 method for class 'mcmc_hsar'
summary(object, ...)
S3 method for class 'mcmc_hsar'
print(x, ...)

Arguments
object mcmc_hsar An mcmc_hsar object returned from the hsar function
x mcmc_hsar An mcmc_hsar object returned from the hsar function
... Other arguments passed through

See Also
hsar

summary.mcmc_hsar_lambda_0

summary method for class mcmc_hsar_lambda_0

Description
Methods for presenting the result of a fitted HSAR model with λ equal to 0. This is a model without the consideration of the possible interdependency between higher-level spatial units.

Usage
S3 method for class 'mcmc_hsar_lambda_0'
summary(object, ...)
S3 method for class 'mcmc_hsar_lambda_0'
print(x, ...)

Arguments
object mcmc_hsar_lambda_0 An mcmc_hsar_lambda_0 object returned from the hsar function
x mcmc_hsar_lambda_0 An mcmc_hsar_lambda_0 object returned from the hsar function
... Other arguments passed through

See Also
hsar
summary.mcmc_hsar_rho_0

summary method for class mcmc_hsar_rho_0

Description

Methods for presenting the result of a fitted HSAR model with \(\rho \) equal to 0. This is a model without the consideration of the possible interdependency between lower-level spatial units.

Usage

```r
## S3 method for class 'mcmc_hsar_rho_0'
summary(object, ...)

## S3 method for class 'mcmc_hsar_rho_0'
print(x, ...)
```

Arguments

- `object` mcmc_hsar_rho_0 An `mcmc_hsar_rho_0` object returned from the `hsar` function
- `x` mcmc_hsar_rho_0 An `mcmc_hsar_rho_0` object returned from the `hsar` function
- `...` Other arguments passed through

See Also

`hsar`

summary.mcmc_sar

summary method for class mcmc_sar

Description

Methods for presenting the result of a fitted standard spatial econometric model or a spatially lagged dependent variable model

Usage

```r
## S3 method for class 'mcmc_sar'
summary(object, ...)

## S3 method for class 'mcmc_sar'
print(x, ...)
```
Arguments

- `object` (mcmc_sar object returned from the `sar` function)
- `x` (mcmc_sar object returned from the `sar` function)
- `...` (Other arguments passed through)

See Also

- `sar`
Index

*Topic **hierarchical spatial data**
 Beijingdistricts, 3
 depmunic, 4
 landprice, 9
 landSPDF, 10
 properties, 11

*Topic **spatial econometrics**
 hsr, 5
 HSAR-package, 2
 sar, 12
 summary.mcmc_hsar, 14
 summary.mcmc_hsar_lambda_0, 15
 summary.mcmc_hsar_rho_0, 16
 summary.mcmc_sar, 16

Beijingdistricts, 3, 8, 10, 14

depmunic, 4, 12

HSAR (HSAR-package), 2
hsr, 5, 14–16
HSAR-package, 2

landprice, 3, 8, 9, 10, 14
landSPDF, 3, 8, 10, 10, 14

print.mcmc_hsar (summary.mcmc_hsar), 14
print.mcmc_hsar_lambda_0
 (summary.mcmc_hsar_lambda_0), 15
print.mcmc_hsar_rho_0
 (summary.mcmc_hsar_rho_0), 16
print.mcmc_sar (summary.mcmc_sar), 16
properties, 4, 11

sar, 8, 12, 17
summary.mcmc_hsar, 14
summary.mcmc_hsar_lambda_0, 15
summary.mcmc_hsar_rho_0, 16
summary.mcmc_sar, 16