Package ‘IDSL.IPA’

December 17, 2021

Type Package
Title Intrinsic Peak Analysis (IPA) for HRMS Data
Version 1.3
Depends R (>= 4.0)
Imports stats, Rcpp, BiocManager, mzR, grid, readxl, parallel, doSNOW, foreach, ggplot2, gridExtra, png
Author Sadjad Fakouri-Baygi [cre, aut]
(<https://orcid.org/0000-0002-6864-6911>), Dinesh Barupal [aut] (<https://orcid.org/0000-0002-9954-8628>)
Maintainer Sadjad Fakouri-Baygi <sadjad.fakouri-baygi@mssm.edu>
Description A sophisticated pipeline for processing high-resolution LC/MS data to extract signals of organic compounds. The package performs isotope pairing, peak detection, alignment, RT correction, gap filling, peak annotation and visualization of extracted ion chromatograms and total ion chromatograms.
License MIT + file LICENSE
BugReports https://github.com/idslme/idsl.ipa/issues
Encoding UTF-8
LazyData true
Archs i386, x64
NeedsCompilation no
Repository CRAN
Date/Publication 2021-12-17 07:32:03 UTC

R topics documented:

asymmetry_factor .. 3
baseline_developer .. 3
carbon_isotopesExplorer .. 4
R topics documented:

- chromatogram_builder .. 5
- chromatography_analysis 5
- derivative_skewness .. 7
- der_5points_stencil ... 7
- EIC_plotter ... 8
- fronting_tailing_resolver 9
- gaussianity_measurement 10
- IPA_CompoundsAnnotation 10
- IPA_GapFiller ... 11
- IPA_PeakAlignment .. 11
- IPA_PeakAnalyzer ... 12
- IPA_PeaklistAnnotation 12
- IPA_TargetedAnalysis ... 13
- IPA_Workflow .. 14
- IPA_xlsxAnalyzer ... 14
- islocalminimum ... 15
- loadRdata ... 16
- MS_deconvoluter .. 16
- mz_clustering_xic .. 17
- opendir ... 17
- peak_alignment ... 18
- peak_area .. 18
- peak_detection ... 19
- peak_sharpness ... 20
- peak_spline .. 20
- peak_width .. 21
- peak_Xcol2 ... 21
- plot_mz_eic ... 22
- plot_simple_tic .. 22
- primary_peak_analyzer 23
- pseudomoments_symmetry 24
- recursive_mass_correction 25
- reference_peaks_detector 26
- sample_rt_corrector ... 27
- segment ... 27
- snr_rms ... 28
- snr_signal2baseline ... 28
- snr_xcms .. 29
- spectraList_filtering .. 30
- usp_tailing_factor .. 30
- XIC ... 31
- xlsxAnalyzer_EIC ... 31

Index ... 33
asymmetry_factor

Asymmetry factor for a chromatographic peak

Description

This function calculates an asymmetry factor for a chromatographic peak.

Usage

asymmetry_factor(rt, int)

Arguments

rt a vector of retention times for the chromatographic peak.
int a vector of intensities corresponding to the vector of retention times for the chromatographic peak.

Value

asymmetry of the chromatographic peak. 1 is for very symmetric peak.

Examples

data(peak_spline)
rt <- peak_spline[, 1]
int <- peak_spline[, 2] - peak_spline[, 3]
asymmetry_factor(rt, int)

baseline_developer

Develop a baseline for the chromatogram using local minima

Description

This function generates a vector of baselines for the chromatogram using local minima. It also is capable of excluding outlier local minima to generate a realistic baseline including true baseline regions. This baseline may represent the local noise levels for the chromatogram.

Usage

baseline_developer(segment, int)

Arguments

segment a matrix or a vector of adjusted scan number of local minima w/ or w/o redundant local minima. Adjusted scan numbers are the scan numbers but adjusted to start at 1.
int a vector of intensities of the chromatogram.
carbon_isotopes_explorer

Value

A vector of baselines in the same size of the "int" vector.

Examples

data(segment)
data(chromatogram_builder)
int <- chromatogram_builder$SmoothedChromatogram
baseline_developer(segment, int)

carbon_isotopes_explorer

Carbon Isotopes Explorer

Description

This function isolates 12C/13C isotopologue pairs in high-resolution mass spectral datasets

Usage

carbon_isotopes_explorer(spectraList, int_threshold, mass_accuracy_13c,
max_R13C)

Arguments

spectraList a list of mass spectra in each chromatogram scan.
int_threshold a value to represent intensity threshold at each chromatogram scan.
mass_accuracy_13c a mass error to detect 13C isotopologues.
max_R13C a maximum allowed value of R13C for 12C/13C isotopologue pairs in each chromatogram scan.

Value

A matrix consists of 5 columns. The column contents are the m/z of 12C isotopologues, intensity of 12C isotopologues, scan number (t), m/z of 13C isotopologues, and intensity of 13C isotopologues, respectively.
chromatogram_builder

chromatogram builder for m/z = 263.1678 in 003.d from cord blood sample

Description

illustiates a chromatogram and baseline vectors to indicate chromatogram development.

Usage

data("chromatogram_builder")

Format

A data frame with 219 observations on the following 6 variables.

- **ScanNumber** a numeric vector
- **RetentionTime** a numeric vector
- **SmoothedChromatogram** a numeric vector
- **RawChromatogram** a numeric vector
- ‘12C/13C Isotopologue Pairs’ a numeric vector
- **Baseline** a numeric vector

Examples

data(chromatogram_builder)

chromatography_analysis

Chromatography analysis

Description

This function detect individual chromatographic peaks and measures their peak qualification metrics.

Usage

chromatography_analysis(spec_scan_xic, smoothing_window, peak_resolving_power, min_nIsoPair, min_peak_height, min_ratio_IsoPair, max_rpw, min_snr_baseline, max_R13C_integrated_peak, max_percentage_missing_scans, mz_target, rt_target = 0, mass_accuracy_xic, spectraList, RetentionTime, n_spline)
Arguments

- **spec_scan_xic** a matrix consists of 5 columns. The column contents are the m/z of 12C isotopologues, intensity of 12C isotopologues, scan number (t), m/z of 13C isotopologues, and intensity of 13C isotopologues, respectively.
- **smoothing_window** a number of scans for peak smoothing.
- **peak_resolving_power** a value to represent peak resolving power.
- **min_nIsoPair** a minimum number of nIsoPair for an individual peak.
- **min_peak_height** a minimum peak height for an individual peak.
- **min_ratio_IsoPair** a minimum ratio of nIsoPair per number of available scans within an individual peak.
- **max_rpw** a maximum allowed value of ratio of peak width at half-height to baseline (RPW) for an individual peak.
- **min_snr_baseline** a minimum S/N baseline for an individual peak.
- **max_R13C_integrated_peak** a maximum allowed value of average R13C for an individual peak.
- **max_percentage_missing_scans** a maximum allowed value of percentage missing scans on the raw chromatogram for an individual peak.
- **mz_target** a m/z value to perform chromatography analysis.
- **rt_target** a retention time value for a targeted peak to calculate the ancillary chromatography parameters. When this parameter set at 0, the ancillary chromatography parameters are calculated for the entire detected peaks.
- **mass_accuracy_xic** a mass error to perform chromatography analysis.
- **spectraList** a list of mass spectra in each chromatogram scan.
- **RetentionTime** a vector of retention times vs. corresponding scan numbers.
- **n_spline** number of points for further smoothing using a cubic spline smoothing method to calculate ancillary chromatographical parameters.

Value

- a data frame consisting of 24 columns representing chromatography and mass spectrometry parameters. Each row represents an individual separated chromatographic peak.
derivative_skewness
Derivative skewness

Description
This function calculates skewness of a chromatographic peak using first order degree of numerical differentiation.

Usage
```
derivative_skewness(rt, int)
```

Arguments
- `rt` a vector representing retention times of the chromatographic peak.
- `int` a vector representing intensities of the chromatographic peak.

Value
Skewness of a chromatographic peak. 1 is for very symmetric peak. Minimum is 0 from this function.

Examples
```
data(peak_spline)
rt <- peak_spline[, 1]
int <- peak_spline[, 2]
derivative_skewness(rt, int)
```

der_5points_stencil
Numerical differentiation by five-point stencil method

Description
This module performs numerical differentiation using the five-point stencil method.

Usage
```
der_5points_stencil(x, y, n)
```

Arguments
- `x` a vector of values for x.
- `y` a vector of values for y.
- `n` order of numerical differentiation (n=1-4).
Value

A matrix of 2 columns. The first column represents x and the second column represents numerical differentiation values. This matrix has four rows (two rows from the beginning and 2 rows from the end) less than length of x or y.

Examples

data(peak_spline)
rt <- peak_spline[, 1]
int <- peak_spline[, 2]
n <- 2 # second order derivative
der_5points_stencil(rt, int, n)

Description

This function plots the EIC figure and annex the chromatographic properties to the EIC figures.

Usage

EIC_plotter(spec_scan_xic, peak_property_xic, smoothing_window, peak_resolving_power, mass_accuracy_xic, spectraList, RetentionTime, mz_target, rt_target, file_name, legend_EIC)

Arguments

spec_scan_xic a matrix consists of 5 columns. The column contents are the m/z of 12C isotopologues, intensity of 12C isotopologues, scan number (t), m/z of 13C isotopologues, and intensity of 13C isotopologues.
peak_property_xic a data frame representing chromatographic peak properties.
smoothing_window number of scans for peak smoothing.
peak_resolving_power a value to represent peak resolving power.
mass_accuracy_xic a mass accuracy value to perform chromatography analysis.
spectraList a list of mass spectra in each chromatogram scan.
RetentionTime a vector of retention times vs. corresponding scan numbers.
mz_target an m/z value to perform chromatography analysis.
rt_target the retention time value of the candidate peak.
file_name name of HRMS file used for peak construction.
legend_EIC A file to attach the legends on the EIC figures.
fronting_tailing_resolver

Description

This function attempts to resolve peak tailings or frontings into the main peak in case they were detected as separate peaks.

Usage

fronting_tailing_resolver(segment, int, max_space, peak_resolving_power)

Arguments

- **segment**: a matrix or a vector of peak boundaries.
- **int**: a vector of intensities of the entire chromatogram.
- **max_space**: maximum scan number difference between peak tailing or fronting and the main peak.
- **peak_resolving_power**: power of peak resolving tool.

Value

A matrix of 2 columns. Each row indicates peak boundary indices on the 'int' vector after resolving fronting and tailing peaks.

Examples

data(segment)
data(chromatogram_builder)
int <- chromatogram_builder$SmoothedChromatogram
max_space <- 7
peak_resolving_power <- 0.2
fronting_tailing_resolver(segment, int, max_space, peak_resolving_power)
gaussianity_measurement

gaussianity measurement

Description

This module measures gaussianity of chromatographic peak using p-values of Kolmogorov-Smirnov test (two-sided) at top 80 percent of peak.

Usage

```r
gaussianity_measurement(RT, Int, BL, gauge = 0.8)
```

Arguments

- **RT**
 - a vector of retention times of the chromatographic peak.
- **Int**
 - a vector of intensities of the chromatographic peak.
- **BL**
 - a vector of baseline of the chromatographic peak.
- **gauge**
 - represents the gauge height of peak for Gaussianity measurement.

Value

Gaussianity of the chromatographic peak.

Examples

```r
data("peak_spline")
RT <- peak_spline[, 1]
Int <- peak_spline[, 2]
BL <- peak_spline[, 3]
gaussianity_measurement(RT, Int, BL, gauge = 0.8)
```

IPA_CompoundsAnnotation

Compound-centric peak annotation

Description

This function performs compound-centric peak annotation.

Usage

```r
IPA_CompoundsAnnotation(PARAM)
```
IPA_GapFiller

Arguments
PARAM a data frame from IPA_xlsxAnalyzer function containing the IPA parameters.

Value
This function saves individual .CSV files for each compound in the "compound_centeric_annotation" folder.

IPA_GapFiller IPA GapFiller

Description
This function fills the gaps on the peak table.

Usage
IPA_GapFiller(PARAM)

Arguments
PARAM a data frame from IPA_xlsxAnalyzer function containing the IPA parameters.

Value
This function saves individual .CSV and .Rdata files for the gap-filled peak tables for peak height, area, and R13C properties in the "peak_alignment" folder.

IPA_PeakAlignment IPA peak alignment

Description
This function produce an aligned peak table from individual peaklists.

Usage
IPA_PeakAlignment(PARAM)

Arguments
PARAM is a data frame from IPA_xlsxAnalyzer function.

Value
This function saves individual .CSV and .Rdata files for the aligned peak tables for peak height, area, and R13C properties in the "peak_alignment" folder.
Description

This function performs the IPA peak detection module.

Usage

IPA_PeakAnalyzer(PARAM)

Arguments

PARAM is a data frame from IPA_xlsxAnalyzer function.

Value

This function saves individual peaklist files in .CSV and .Rdata formats for HRMS files in the "peaklists" folder.

Description

This function performs sample-centric peak annotation.

Usage

IPA_PeaklistAnnotation(PARAM)

Arguments

PARAM a data frame from IPA_xlsxAnalyzer function.

Value

This function saves individual .CSV files for peak height, area, and R13C properties in the "sample_centeric_annotation" folder.
Description

This function plots extracted ion chromatogram (EIC) figures in the targeted mode.

Usage

IPA_TargetedAnalysis(spreadsheet, mzCandidate, rtCandidate, exportEIC = TRUE, exportTable = FALSE)

Arguments

spreadsheet a spreadsheet containing the parameters.
mzCandidate a vector of candidate m/z values.
rtCandidate a vector of candidate RT values.
exportEIC TRUE by default. To plot and save EICs.
exportTable FALSE by default. To return the whole peaklists for the m/z and RT vectors, select TRUE.

Value

This function saves extracted ion chromatograms in .png format in the "EICs" folder when "exportEIC = TRUE", and it saves a table of peak properties when "exportTable = TRUE".

Examples

s_path <- system.file("extdata", package = "IDSL.IPA")
SSh1 <- paste0(s_path,"/IPA_parameters.xlsx")
spreadsheet <- readxl::read_xlsx(SSh1, sheet = 'IPA_targeted')

temp_wd <- tempdir()
temp_wd_zip <- paste0(temp_wd,"/testfiles.zip")
download.file(
 destfile = temp_wd_zip)
unzip(temp_wd_zip, exdir = temp_wd)

spreadsheets[2, 4] <- temp_wd
spreadsheets[5, 4] <- temp_wd
mzCandidate <- c(53.01853, 61.00759)
rtCandidate <- c(0.951, 0.961)

IPA_TargetedAnalysis(spreadsheet, mzCandidate, rtCandidate)
IPA_Workflow
IPA Workflow

Description
This function executes the IPA workflow in order.

Usage
IPA_Workflow(spreadsheet)

Arguments

spreadsheet IPA spreadsheet

Value
This function organizes the IPA file processing for a better performance using the template spreadsheet.

Examples

```r
library(IDSL.IPA)
s_path <- system.file("extdata", package = "IDSL.IPA")
SSh1 <- paste0(s_path,"/IPA_parameters.xlsx")
temp_wd <- tempdir()
temp_wd_zip <- paste0(temp_wd,"/testfiles.zip")
spreadsheet <- readxl::read_xlsx(SSh1)
destfile = temp_wd_zip)
unzip(temp_wd_zip, exdir = temp_wd)
spreadsheet[7, 4] <- temp_wd
spreadsheet[40, 4] <- s_path
spreadsheet[10, 4] <- temp_wd
IPA_Workflow(spreadsheet)
```

IPA_xlsxAnalyzer
IPA xlsx Analyzer

Description
This function processes the spreadsheet of the IPA parameters to ensure the parameter inputs are in agreement with the IPA requirements.
islocalminimum

Usage

```r
IPA_xlsxAnalyzer(spreadsheet)
```

Arguments

- `spreadsheet` IPA spreadsheet

Value

This function returns the IPA parameters to feed the IPA_Workflow, IPA_CompoundsAnnotation, IPA_GapFiller, IPA_PeakAlignment, IPA_PeakAnalyzer, and IPA_PeaklistAnnotation functions.

Examples

```r
s_path <- system.file("extdata", package = "IDSL.IPA")
SSh1 <- paste0(s_path, "/IPA_parameters.xlsx")
temp_wd <- tempdir()
temp_wd_zip <- paste0(temp_wd,"/testfiles.zip")
spreadsheet <- readxl::read_xlsx(SSh1)
destfile = temp_wd_zip)
unzip(temp_wd_zip, exdir = temp_wd)
spreadsheet[7, 4] <- temp_wd
spreadsheet[40, 4] <- s_path # reference file location
spreadsheet[10, 4] <- temp_wd # output data location
PARAM <- IDSL.IPA::IPA_xlsxAnalyzer(spreadsheet)
```

islocalminimum

Description

This function returns indices of local minimum points on a curve.

Usage

```r
islocalminimum(y)
```

Arguments

- `y` is a vector of y values.

Value

A vector in the same size of vector 'y'. Local minimum arrays represented by -1.
Examples

data(chromatogram_builder)
int <- chromatogram_builder$SmoothedChromatogram
islocalminimum(int)

Description

This function loads .Rdata files into a variable.

Usage

loadRdata(fileName)

Arguments

fileName is an .Rdata file.

Value

The called variable into the new assigned variable name.

MS_deconvoluter

Description

This function deconvolute mass spectrometry files into a list of mass spectrals and a vector of retention times.

Usage

MS_deconvoluter(MassSpec_file, MS_level = 1)

Arguments

MassSpec_file mass spectrometry file.
MS_level MS level to extract information.

Value

spectraList a list of mass spectra.
RetentionTime a vector of retention times for scan numbers.
MS_polarity mass spectrometry ionization mode (+/-)
mz_clustering_xic

Description
This function clusters related 12C m/z values.

Usage
mz_clustering_xic(spec_scan, mass_accuracy_xic, min_peak_height, min_nIsoPair)

Arguments
spec_scan a matrix consists of 3 columns. The column contents are the m/z of 12C isotopologues, intensity of 12C isotopologues, and scan number (t).
mass_accuracy_xic mass accuracy to detect related 12C m/z values.
min_nIsoPair minimum number of nIsoPair for an individual peak.
min_peak_height minimum peak height for an individual peak.

Value
This function returns a list on index numbers of EICs for the "spec_scan" variable.

opendir

Description
This function opens the directory.

Usage
opendir(dir)

Arguments
dir full address of the directory.

Value
This function opens its input directory for the user.
peak_alignment

Description

This function aligns peaks from multiple peaklists and produce a peak table to find common peaks among multiple samples.

Usage

peak_alignment(input_path_pl, file_names_pl, RT_pl, mz_error, rt_tol, n_quantile, number_processing_cores)

Arguments

- input_path_pl: path to directory of peaklists.
- file_names_pl: name of peaklists for peak table production.
- RT_pl: a list of corrected or uncorrected retention times for each peaklist.
- mz_error: mass error to detect common peaks.
- rt_tol: retention time tolerance to detect common peaks.
- n_quantile: number of total m/z quantiles to split the whole table for faster processing.
- number_processing_cores: number of processing cores.

Value

This function returns an aligned peak table with index numbers from individual peaklists for each peak.

peak_area

Description

This function calculates area under the curve using a trapezoid method.

Usage

peak_area(x, y)

Arguments

- x: is a vector of x values.
- y: is a vector of y values.
peak_detection

Value

A number for the integrated peak area.

Examples

```r
data("peak_spline")
rt <- peak_spline[, 1]
int <- peak_spline[, 2]
peak_area(rt, int)
```

Description

This function detects separated chromatographical peaks on the chromatogram.

Usage

```r
peak_detection(int)
```

Arguments

- `int` a vector of intensities of the chromatogram.

Value

A matrix of 2 columns. Each row indicates peak boundary indices on the 'int' vector.

Examples

```r
data(chromatogram_builder)
int <- chromatogram_builder$SmoothedChromatogram
peak_detection(int)
```
Description

This function measures sharpness of a chromatographic peak.

Usage

```
peak_sharpness(int)
```

Arguments

- `int`: a vector of intensities of the chromatographic peak.

Value

A number representing peak sharpness. The higher values indicate higher sharpness.

Examples

```
data("peak_spline")
int <- peak_spline[, 2]
peak_sharpness(int)
```

Description

illustes a smoothe peak using cubic spline smoothing method

Usage

```
data("peak_spline")
```

Format

A data frame with 100 observations on the following 3 variables:

- `rt_spline` a numeric vector
- `int_spline` a numeric vector
- `bl_approx` a numeric vector

Examples

```
data(peak_spline)
```
peak_width

Description
This function measures peak width at different peak heights.

Usage
peak_width(rt, int, gauge)

Arguments
rt a vector of retention times of the chromatographic peak.
int a vector of intensities of the chromatographic peak.
gauge a height gauge to measure the peak width. This parameter should be between 0-1.

Value
A peak width at the guaged height.

Examples
```r
data("peak_spline")
rt <- peak_spline[, 1]
int <- peak_spline[, 2] - peak_spline[, 3]
gauge <- 0.5
peak_width(rt, int, gauge)
```

peak_Xcol2

Description
This function fills the peak table from individual peaklists.

Usage
peak_Xcol2(input_path_peaklist, file_names_peaklist, peak_Xcol)

Arguments
input_path_peaklist

address of the peaklists.

file_names_peaklist

a vector of the peaklist file names.

peak_Xcol

a matrix of index numbers in individual peaklists for each peak (m/z-RT).
Value

A list of three peak tables for peak height, peaks area, and R13C.

plot_mz_eic

Description

plot_mz_eic

Usage

plot_mz_eic(filelist, filelocation, mztarget, mzdelta, numberOfcores, rtstart = 0, rtend = 0, plotTitle = "")

Arguments

filelist filelist
filelocation filelocation
mztarget mztarget
mzdelta mzdelta
numberOfcores numberOfcores
rtstart rtstart
rtend rtend
plotTitle plotTitle

Value

plot_mz_eic

plot_simple_tic

Description

plot_simple_tic

Usage

plot_simple_tic(filelist, filelocation, numberOfcores, plotTitle = "Total Ion Chromatogram")
primary_peak_analyzer

Arguments

- **filelist**
- **filelocation**
- **numberOfcores**
- **plotTitle**

Value

- **plot_simple_tic**

primary_peak_analyzer Primary peak analyzer

Description

This function performs the first round of the chromatography analysis.

Usage

```r
primary_peak_analyzer(spec_scan, index_xic, scan_tol,
spectraList, RetentionTime, mass_accuracy_xic,
smoothing_window, peak_resolving_power, min_nIsoPair,
min_peak_height, min_ratio_IsoPair, max_rpw, min_snr_baseline,
max_R13C_integrated_peak, max_percentage_missing_scans,
n_spline)
```

Arguments

- **spec_scan**
 - a matrix consists of 5 columns. The column contents are the m/z of 12C isotoplogues, intensity of 12C isotoplogues, scan number (t), m/z of 13C isotoplogues, and intensity of 13C isotoplogues.
- **index_xic**
 - a list of indices of candidate 12C m/z values from spec_scan matrix.
- **scan_tol**
 - scan tolerance to extend the chromatogram for better calculations.
- **spectraList**
 - a list of mass spectra in each chromatogram scan.
- **RetentionTime**
 - a vector of retention times vs. corresponding scan numbers.
- **mass_accuracy_xic**
 - a m/z value to perform chromatography analysis.
- **smoothing_window**
 - number of scans for peak smoothing.
- **peak_resolving_power**
 - a value to represent peak resolving power.
- **min_nIsoPair**
 - minimum number of nIsoPair for an individual peak.
- **min_peak_height**
 - minimum peak height for an individual peak.
pseudomoments_symmetry

min_ratio_IsoPair
 minimum ratio of nIsoPair per number of available scans within an individual peak.

max_rpw
 maximum allowed value of ratio of peak width at half-height to baseline (RPW) for an individual peak.

min_snr_baseline
 minimum S/N baseline for an individual peak.

max_R13C_integrated_peak
 maximum allowed value of average R13C for an individual peak.

max_percentage_missing_scans
 maximum allowed value of percentage missing scans on the raw chromatogram for an individual peak.

n_spline
 number of points for further smoothing using a cubic spline smoothing method.

Value

a data frame consisting of 24 columns representing chromatography and mass spectrometry parameters. Each row represents an individual separated chromatographic peak.

Description

This function measures peak symmetry and skewness using the inflection points of the peak on both sides.

Usage

pseudomoments_symmetry(rt, int)

Arguments

rt
 a vector of retention times for the chromatographic peak.

int
 a vector of intensities corresponding to the vector of retention times for the chromatographic peak.

Value

PeakSymmetry
 peak symmetry for the chromatographic peak.

Skewness
 skewness for the chromatographic peak.
Examples

data("peak_spline")
rt <- peak_spline[, 1]
int <- peak_spline[, 2] - peak_spline[, 3]
pseudomoments_symmetry(rt, int)

Description

This function performs recursive mass correction.

Usage

recursive_mass_correction(peaklist, spec_scan, scan_tol,
spectralList, RetentionTime, mass_accuracy_xic, smoothing_window,
peak_resolving_power, min_nIsoPair, min_peak_height, min_ratio_IsoPair,
max_rpw, min_snr_baseline, max_R13C_integrated_peak,
max_percentage_missing_scans, n_spline)

Arguments

peaklist an IPA peaklist from 'primary_peak_analyzer' function.
spec_scan a matrix consists of 5 columns. The column contents are the m/z of 12C isotopologues, intensity of 12C isotopologues, scan number (t), m/z of 13C isotopologues, and intensity of 13C isotopologues.
scan_tol a scan tolerance to extend the chromatogram for better calculations.
spectralList a list of mass spectra in each chromatogram scan.
RetentionTime a vector of retention times for corresponding scan numbers.
mass_accuracy_xic an m/z value to perform chromatography analysis.
smoothing_window a number of scans for peak smoothing.
peak_resolving_power a value to represent peak resolving power.
min_nIsoPair minimum number of nIsoPair for an individual peak.
min_peak_height minimum peak height for an individual peak.
min_ratio_IsoPair minimum ratio of nIsoPair per number of available scans within an individual peak.
max_rpw maximum allowed value of ratio of peak width at half-height to baseline (RPW) for an individual peak.
min_snr_baseline
minimum S/N baseline for an individual peak.

max_R13C_integrated_peak
maximum allowed value of average R13C for an individual peak.

max_percentage_missing_scans
maximum allowed value of percentage missing scans on the raw chromatogram for an individual peak.

n_spline
number of points for further smoothing using a cubic spline smoothing method to calculate ancillary chromatographical parameters.

Value
a data frame consisting of 24 columns representing chromatography and mass spectrometry parameters. Each row represents an individual separated chromatographic peak.

<table>
<thead>
<tr>
<th>reference_peaks_detector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reference peaks detector</td>
</tr>
</tbody>
</table>

Description
This function detects recurring reference peaks (m/z-RT) for retention time correction.

Usage
```
reference_peaks_detector(input_path_pl, file_names_ref, min_frequency_ref_peaks, RT_pl_ref, mz_error, rt_tol, n_quantile, number_processing_cores)
```

Arguments
- `input_path_pl` path to directory of peaklists.
- `file_names_ref` name of peaklists files to detect recurring reference peaks (m/z-RT).
- `min_frequency_ref_peaks` minimum frequency of the recurring reference peaks (m/z-RT) in the reference files.
- `RT_pl_ref` a list of corrected or uncorrected retention times for each peaklist.
- `mz_error` mass error to detect common peaks.
- `rt_tol` retention time tolerance to detect common peaks.
- `n_quantile` number of total m/z quantiles to split the whole table for faster processing.
- `number_processing_cores` number of processing cores.

Value
a matrix of two columns of m/z and RT of common peaks in the reference samples.
sample_rt_corrector

Description
This function calculates corrected retention times for the peaklists.

Usage
sample_rt_corrector(reference_mz_rt_peaks, peaklist, mz_error,
rt_correction_method, reference_peak_tol = 1, polynomial_degree = 3)

Arguments
reference_mz_rt_peaks
- a matrix of reference peaks for retention time correction.
peaklist
- an IPA peaklist.
mz_error
- mass error to detect common reference peaks.
rt_correction_method
- This parameter can be either 'RetentionIndex' or 'Polynomial'.
reference_peak_tol
- number of reference peaks for retention time correction using 'RetentionIndex'
 method.
polynomial_degree
- polynomial degree for retention time correction using 'Polynomial' method.

Value
- a list of corrected retention times for each peaklist.

segment

Description
- illustrates an output matrix of chromatogram peak detection module from the "chromatogram_builder.rda" object.

Usage
data("segment")

Format
- The format is: num [1:16, 1:2] 7 15 23 33 38 46 67 86 102 118 ...
`snr_rms`

Description

This function calculates signal-to-noise ratio using root mean square.

Usage

```r
snr_rms(int, baseline, gauge)
```

Arguments

- `int` is the vector of intensities corresponding to the vector of retention times for the chromatographic peak.
- `baseline` is a vector of baseline of the chromatographic peak.
- `gauge` represents the gauge height of peak for gaussianity measurement.

Value

S/N value

Examples

```r
data("peak_spline")
int <- peak_spline[, 2]
baseline <- peak_spline[, 3]
gauge <- 0.8
snr_rms(int, baseline, gauge)
```

`snr_signal2baseline`

Description

This function calculates S/N using local noise levels from baseline,

Usage

```r
snr_signal2baseline(int, baseline)
```
Arguments

int a vector of intensities corresponding to the vector of retention times for the chromatographic peak.

baseline a vector of baseline of the chromatographic peak.

Value

S/N value

Examples

data("peak_spline")
int <- peak_spline[, 2]
baseline <- peak_spline[, 3]
snr_signal2baseline(int, baseline)

Description

This function calculates S/N values using a method suggested in the xcms paper (Tautenhahn, 2008).

Usage

snr_xcms(int)

Arguments

int a vector of intensities corresponding to the vector of retention times for the chromatographic peak.

Value

S/N value

References

Examples

data(peak_spline)
int <- peak_spline[, 2]
snr_xcms(int)
spectraList_filtering spectraList filtering

Description
This function reduces the size of the spectraList value by removing m/z values with no correspondence to 12C/13C isotopologue pairs.

Usage
spectraList_filtering(spec_scan.xic, spectraList, rounding_digit)

Arguments
- spec_scan.xic: a matrix of any size, but the first column containing the m/z of 12C isotopologues are used.
- spectraList: a list of mass spectra in each chromatogram scan.
- rounding_digit: rounding digit to choose power of size reduction.

Value
a list of mass spectrals

usp_tailing_factor USP tailing factor

Description
This function calculates USP tailing factor at above 10 percent of the height.

Usage
usp_tailing_factor(rt, int)

Arguments
- rt: a vector of retention times for the chromatographic peak.
- int: a vector of intensities corresponding to the vector of retention times for the chromatographic peak.

Value
USP tailing factor for the chromatographic peak.
Examples

```r
data(peak_spline)
rt <- peak_spline[, 1]
int <- peak_spline[, 2] - peak_spline[, 3]
usp_tailing_factor(rt, int)
```

Description

XIC

Usage

```r
XIC(spectraList.xic, scan_number_start = 1, mz_target, mass_accuracy_xic)
```

Arguments

- `spectraList.xic`: a list of mass spectra in each chromatogram scan.
- `scan_number_start`: the first scan number.
- `mz_target`: an m/z value to perform XIC analysis.
- `mass_accuracy_xic`: a mass error to perform XIC analysis.

Value

A matrix of three columns representing scan number, m/z, and intensity.

Description

This function processes the spreadsheet of the IPA parameters to ensure the parameter inputs are in agreement with the IPA_EIC requirements.

Usage

```r
xlsxAnalyzer_EIC(spreadsheet)
```

Arguments

- `spreadsheet`: contains the IPA parameters.
Value

This function returns the IPA parameters to feed the IPA_TargetedAnalysis function.
Index

datasets
- `chromatogram_builder`, 5
- `peak_spline`, 20
- `segment`, 27
- `asymmetry_factor`, 3
- `baseline_developer`, 3
- `carbon_isotopes_explorer`, 4
- `chromatogram_builder`, 5
- `chromatography_analysis`, 5
- `derPoints_stencil`, 7
- `derivative_skewness`, 7
- `EIC_plotter`, 8
- `fronting_tailing_resolver`, 9
- `gaussianity_measurement`, 10
- `IPA_CompoundsAnnotation`, 10
- `IPA_GapFiller`, 11
- `IPA_PeakAlignment`, 11
- `IPA_PeakAnalyzer`, 12
- `IPA_PeaklistAnnotation`, 12
- `IPA_TargetedAnalysis`, 13
- `IPA_Workflow`, 14
- `IPA_xlsxAnalyzer`, 14
- `islocalminimum`, 15
- `loadRdata`, 16
- `MS_deconvoluter`, 16
- `mz_clustering_xic`, 17
- `opendir`, 17
- `peak_alignment`, 18
- `peak_area`, 18
- `peak_detection`, 19
- `peak_sharpness`, 20
- `peak_spline`, 20
- `peak_width`, 21
- `peak_Xcol2`, 21
- `plot_mz_eic`, 22
- `plot_simple_tic`, 22
- `primary_peak_analyzer`, 23
- `pseudomoments_symmetry`, 24
- `recursive_mass_correction`, 25
- `reference_peaks_detector`, 26
- `sample_rt_corrector`, 27
- `segment`, 27
- `snr_rms`, 28
- `snr_signal2baseline`, 28
- `snr_xcms`, 29
- `spectraList_filtering`, 30
- `usp_tailing_factor`, 30
- `XIC`, 31
- `xlsxAnalyzer_EIC`, 31

33