Package ‘ImpactEffectsize’

Type Package

Title Calculation and Visualization of the Impact Effect Size Measure

Description A non-parametric effect size measure capturing changes in central tendency or shape of data distributions. The package provides the necessary functions to calculate and plot the Impact effect size measure between two groups.

Version 0.6.2
Date 2022-02-17
Author Jorn Lotsch[aut,cre], Alfred Ultsch[aut]
Maintainer Jorn Lotsch <j.loetsch@em.uni-frankfurt.de>
LazyData true
Imports caTools, matrixStats, parallelDist, methods, stats, graphics, Rcpp
Suggests testthat
Depends R (>= 3.5.0)
License GPL-3
RoxygenNote 6.1.1
LinkingTo Rcpp
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-02-18 09:50:10 UTC

R topics documented:

ImpactEffectsize-package .. 2
BcellLymphomaCD79 ... 2
FeatureselectionData ... 3
FlowcytometricData ... 3
Impact .. 4
SameMeansData .. 5
StocksFluctuation ... 5

Index 7
Description

Calculation and visualization of the Impact effect size measure. A non-parametric effect size measure capturing changes in central tendency or shape of data distributions for feature selection preceding machine-learning. The package provides the necessary functions to calculate and plot the Impact effect size measure between two groups.

References

Example data of bimodal CD79 expression.

Description

Data set of CD79 expression in patients with B lymphoma (class 1) and in controls (class 2).

Usage

data("BcellLymphomaCD79")

Details

Size 258429 x 2, Dimensions 1, stored in BcellLymphomaCD79$Data
Classes 2, stored in BcellLymphomaCD79$Classes

Examples

data(BcellLymphomaCD79)
str(BcellLymphomaCD79)
FeatureselectionData

Example data with two groups and the Impact effect size measure.

Description

Dataset with 2 classes and 20 variables that allow class separation at various degrees of difficulty.

Usage

data("FeatureselectionData")

Details

Size 2000 x 20. Dimensions 1, stored in FeatureselectionData$Var0001,...,FeatureselectionData$Var0020
Classes 2, stored in FeatureselectionData$Classes

Examples

data(FeatureselectionData)
str(FeatureselectionData)

FlowcytometricData

Example data of hematologic marker expression.

Description

Data set of 8 flow cytometry-based lymphoma makers from 1,494 cells from healthy subjects (class 1) and 1,302 cells from lymphoma patients (class 2).

Usage

data("FlowcytometricData")

Details

Size 2796 x 9. Dimensions 1, stored in FlowcytometricData$$[CD3,CD4,CD8,CD11,CD19,CD103,CD200,IgM]
Classes 2, stored in FlowcytometricData$Classes

Examples

data(FlowcytometricData)
str(FlowcytometricData)
Impact

Impact effect size measure

Description
Calculates the Impact effect size measure that is based on the group distance and the difference in the shape of the data distribution between two groups.

Usage
Impact(Data, Cls, PlotIt = FALSE, pde = TRUE, col = c("red","blue"), meanLines = FALSE, medianLines = FALSE, ...)

Arguments
- Data: the data of both groups as a vector.
- Cls: the class information as a vector of similar length as the data vector.
- PlotIt: plots the pdf of the two groups as Pareto density estimation.
- col: colors of the two lines to plot. Will be ignored if PlotIt = FALSE.
- pde: plots a standard pdf insted of a non-parametric Pareto density estimation. Will be ignored if PlotIt = FALSE.
- meanLines: adds perpendicular lines at the means of the two groups. Will be ignored if PlotIt = FALSE.
- medianLines: adds perpendicular lines at the medians of the two groups. Will be ignored if PlotIt = FALSE.
- ...: more graphical parameters can be given as plot arguments if PlotIt = TRUE.

Value
Returns a list of value including the main result and intermediate results.
- Impact: the main effect size measure.
- MorphDiff: the extend of the group-difference in the shapes of the pdf.
- CTDiff: the extend of the difference in the group medians.

Author(s)
Jorn Lotsch and Alfred Ultsch

References
Examples

```r
## example 1
data("FeatureselectionData")
ImpactSize <- Impact(Data = FeatureselectionData$Var0011,
                     Cls = FeatureselectionData$Classes, PlotIt = TRUE)

## example 2
data("BcellLymphomaCD79")
data("FeatureselectionData")
data("FlowcytometricData")
data("SameMeansData")
data("StocksFluctuation")
```

SameMeansData

Example artificial data with two groups of same means but different data distribution shapes.

Description

Dataset with 2 classes six variables were both classes have the same means but different shapes of the distribution.

Usage

```r
data("SameMeansData")
```

Details

Size 2000 x 7, Dimensions 1, stored in `SameMeansData$NOchangeInMandS,...,SameMeansData$NegChi2andGauss`
Classes 2, stored in `SameMeansData$Classes`

Examples

```r
data(SameMeansData)
str(SameMeansData)
```

StocksFluctuation

Example data of stock fluctuation.

Description

Data set of Log ratios of daily changes of n =5,522 for 10 German stocks with low fluctuation (class 1) or high fluctuation (class 2).

Usage

```r
data("StocksFluctuation")
```
Details

Size 5522 x 2, Dimensions 1, stored in StocksFluctuation$logFluctuation
Classes 2, stored in StocksFluctuation$Classes

Examples

data(StocksFluctuation)
str(StocksFluctuation)
Index

* Gini’s mean difference
 ImpactEffectsize-package, 2

* Impact
 Impact, 4
 ImpactEffectsize-package, 2

* effect size
 Impact, 4
 ImpactEffectsize-package, 2

BcelllymphomaCD79, 2

FeatureselectionData, 3
FlowcytometricData, 3

Impact, 4
ImpactEffectsize-package, 2

SameMeansData, 5
StocksFluctuation, 5