Package ‘IntCal’

November 26, 2021

Type Package

Title Radiocarbon Calibration Curves

Version 0.3.0

Description The IntCal20 radiocarbon calibration curves (Reimer et al. 2020 <doi:10.1017/RDC.2020.68>) are provided here in a single data package, together with previous IntCal curves (IntCal13, IntCal09, IntCal04, IntCal98) and postbomb curves. Also provided are functions to copy the curves into memory, and to plot the curves and their underlying data, as well as functions to calibrate radiocarbon dates.

License GPL (>= 2)

RoxygenNote 7.1.2

Suggests knitr, rmarkdown, utf8

VignetteBuilder knitr

Encoding UTF-8

NeedsCompilation no

Language en-GB

Author Maarten Blaauw [aut, cre] (<https://orcid.org/0000-0002-5680-1515>)

Maintainer Maarten Blaauw <maarten.blaauw@qub.ac.uk>

Repository CRAN

Date/Publication 2021-11-26 16:11:29 UTC

R topics documented:

 age.pMC ... 2
 calBP.14C .. 3
 caldist ... 3
 calibrate .. 4
 ccurve ... 8
 copyCalibrationCurve .. 10
 draw.ccurve ... 10
 draw.dates .. 12
Calculate pMC values from radiocarbon ages

Arguments

- `mn`: Reported mean of the 14C age.
- `sdev`: Reported error of the 14C age.
- `ratio`: Most modern-date values are reported against 100. If it is against 1 instead, use 1 here.
- `decimals`: Amount of decimals required for the pMC value.

Details

Post-bomb dates are often reported as pMC or percent modern carbon. Since Bacon expects radiocarbon ages, this function can be used to calculate pMC values from radiocarbon ages. The reverse function of `pMC.age`.

Value

pMC values from C14 ages.

Examples

```
age.pMC(-2000, 20)
age.pMC(-2000, 20, 1)
```
calBP.14C

Find the 14C age and error belonging to a cal BP age.

Description
Given a calendar age, the calibration curve (default cc=1) is interpolated and the corresponding 14C age and error are returned.

Usage

calBP.14C(yr, cc = 1, postbomb = FALSE, rule = 1)

Arguments

yr
The cal BP year.
cc
calibration curve for C14 (see caldist()).
postbomb
Whether or not to use a postbomb curve (see caldist()).
rule
How should R’s approx function deal with extrapolation. If rule=1, the default, then NAs are returned for such points and if it is 2, the value at the closest data extreme is used.

Details
Interpolation is used, and values outside the calibration curve are given as NA. For negative cal BP ages, a postbomb curve will have to be provided.

Author(s)
Maarten Blaauw

Examples

calBP.14C(100)

caldist

Calculate calibrated distribution

Description
Calculate the calibrated distribution of a radiocarbon date.
Usage

caldist(
 age,
 error,
 cc = 1,
 postbomb = FALSE,
 yrsteps = FALSE,
 threshold = 0.001,
 calibt = FALSE,
 BCAD = FALSE,
 rule = 1
)

Arguments

- **age**: Uncalibrated radiocarbon age
- **error**: Lab error of the radiocarbon age
- **cc**: Calibration curve to use. Defaults to IntCal20 (cc=1).
- **postbomb**: Whether or not to use a postbomb curve. Required for negative radiocarbon ages.
- **yrsteps**: Steps to use for interpolation. Defaults to the cal BP steps in the calibration curve.
- **threshold**: Report only values above a threshold. Defaults to threshold=1e-6.
- **calibt**: Use the student-t distribution as alternative to the normal distribution. Requires 2 parameters, e.g., calibt=c(3, 4). defaults to FALSE.
- **BCAD**: Which calendar scale to use. Defaults to cal BP, BCAD=FALSE.
- **rule**: Which extrapolation rule to use. Defaults to rule=1 which returns NAs.

Examples

calib <- caldist(130, 20)
pplot(calib, type="l")
postbomb <- caldist(-3030, 20, "nh1", BCAD=TRUE)

calibrate

Plot individual calibrated dates.

Description

Calibrate individual 14C dates, plot them and report calibrated ranges.
Usage

\texttt{calibrate(}
 \texttt{ \hspace{1em} age = 2450,}
 \texttt{ \hspace{1em} error = 50,}
 \texttt{ \hspace{1em} cc = 1,}
 \texttt{ \hspace{1em} postbomb = FALSE,}
 \texttt{ \hspace{1em} reservoir = 0,}
 \texttt{ \hspace{1em} prob = 0.95,}
 \texttt{ \hspace{1em} BCAD = FALSE,}
 \texttt{ \hspace{1em} ka = FALSE,}
 \texttt{ \hspace{1em} cal.lab = c(),}
 \texttt{ \hspace{1em} C14.lab = c(),}
 \texttt{ \hspace{1em} cal.lim = c(),}
 \texttt{ \hspace{1em} C14.lim = c(),}
 \texttt{ \hspace{1em} cc.col = rgb(0, 0.5, 0, 0.7),}
 \texttt{ \hspace{1em} cc.fill = rgb(0, 0.5, 0, 0.7),}
 \texttt{ \hspace{1em} date.col = "red",}
 \texttt{ \hspace{1em} dist.col = rgb(0, 0, 0, 0.2),}
 \texttt{ \hspace{1em} dist.fill = rgb(0, 0, 0, 0.2),}
 \texttt{ \hspace{1em} hpd.fill = rgb(0, 0, 0, 0.3),}
 \texttt{ \hspace{1em} dist.height = 0.3,}
 \texttt{ \hspace{1em} cal.rev = FALSE,}
 \texttt{ \hspace{1em} yr.steps = FALSE,}
 \texttt{ \hspace{1em} threshold = 5e-04,}
 \texttt{ \hspace{1em} edge = TRUE,}
 \texttt{ \hspace{1em} calibt = FALSE,}
 \texttt{ \hspace{1em} rounded = 1,}
 \texttt{ \hspace{1em} extend.range = 0.05,}
 \texttt{ \hspace{1em} legend.cex = 0.8,}
 \texttt{ \hspace{1em} legend1.loc = "topleft",}
 \texttt{ \hspace{1em} legend2.loc = "topright",}
 \texttt{ \hspace{1em} mgp = c(2, 1, 0),}
 \texttt{ \hspace{1em} mar = c(3, 3, 1, 1),}
 \texttt{ \hspace{1em} xaxs = "i",}
 \texttt{ \hspace{1em} yaxs = "i",}
 \texttt{ \hspace{1em} bty = "1",}
 \texttt{ \hspace{1em} ...}
\texttt{)}

Arguments

\texttt{\textbf{age} \hspace{1em} Mean of the uncalibrated C-14 age.}

\texttt{\textbf{error} \hspace{1em} Error of the uncalibrated C-14 age.}

\texttt{\textbf{cc} \hspace{1em} Calibration curve for C-14 dates (1, 2, 3, or 4, or, e.g., "IntCal20", "Marine20", "SHCal20", "nh1", "sh3", or "mixed").}

\texttt{\textbf{postbomb} \hspace{1em} Whether or not this is a postbomb age. Defaults to FALSE.}

\texttt{\textbf{reservoir} \hspace{1em} Reservoir age, or reservoir age and age offset.}
<table>
<thead>
<tr>
<th>prob</th>
<th>Probability confidence intervals (between 0 and 1).</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCAD</td>
<td>Use BC/AD or cal BP scale (default cal BP).</td>
</tr>
<tr>
<td>ka</td>
<td>Use thousands of years instead of years in the plots and hpd ranges. Defaults to FALSE.</td>
</tr>
<tr>
<td>cal.lab</td>
<td>Label of the calendar/horizontal axis. Defaults to the calendar scale, but alternative names can be provided.</td>
</tr>
<tr>
<td>C14.lab</td>
<td>Label of the C-14/vertical axis. Defaults to the 14C scale, but alternative names can be provided.</td>
</tr>
<tr>
<td>cal.lim</td>
<td>Minimum and maximum of calendar axis (default calculated automatically).</td>
</tr>
<tr>
<td>C14.lim</td>
<td>Minimum and maximum of C-14 axis (default calculated automatically).</td>
</tr>
<tr>
<td>cc.col</td>
<td>Colour of the lines of the calibration curve. Defaults to semi-transparent dark green; cc.col=rgb(0,.5,0,.7).</td>
</tr>
<tr>
<td>cc.fill</td>
<td>Colour of the inner part of the calibration curve. Defaults to semi-transparent dark green; cc.col=rgb(0,.5,0,.7).</td>
</tr>
<tr>
<td>date.col</td>
<td>Colour of the "dot-bar" plot of the C14 date. Defaults to date.col="red".</td>
</tr>
<tr>
<td>dist.col</td>
<td>Colour of the outer lines of the distributions. Defaults to semi-transparent grey; dist.col=rgb(0,0,0,.2).</td>
</tr>
<tr>
<td>dist.fill</td>
<td>Colour of the inner part of the distributions. Defaults to semi-transparent grey; dist.col=rgb(0,0,0,.2).</td>
</tr>
<tr>
<td>hpd.fill</td>
<td>Colour of the highest posterior density. Defaults to semi-transparent grey, dist.col=rgb(0,0,0,.3).</td>
</tr>
<tr>
<td>dist.height</td>
<td>Maximum height of the C14 and calibrated distributions (as proportion of the invisible secondary axes). Defaults to 0.3.</td>
</tr>
<tr>
<td>cal.rev</td>
<td>Whether or not to reverse the direction of the calendar axis.</td>
</tr>
<tr>
<td>yr.steps</td>
<td>Temporal resolution at which C-14 ages are calibrated (in calendar years). By default follows the spacing in the calibration curve.</td>
</tr>
<tr>
<td>threshold</td>
<td>Below which value should probabilities be excluded from calculations.</td>
</tr>
<tr>
<td>edge</td>
<td>How to treat dates are at or beyond the edge of the calibration curve. If dates are truncated, a warning is given. If they lie beyond the calibration curve, an error is given.</td>
</tr>
<tr>
<td>calibt</td>
<td>Calibration based on the student-t distribution. By default, the Gaussian distribution is used (calibt=FALSE). To use the student-t distribution, provide two parameters such as calibt=c(3,4).</td>
</tr>
<tr>
<td>rounded</td>
<td>Rounding of the percentages of the reported hpd ranges. Defaults to 1 decimal.</td>
</tr>
<tr>
<td>extend.range</td>
<td>Range by which the axes are extended beyond the data limits. Defaults to 5%.</td>
</tr>
<tr>
<td>legend.cex</td>
<td>Size of the font of the legends. Defaults to 0.8.</td>
</tr>
<tr>
<td>legend1.loc</td>
<td>Where the first legend (with the calibration curve name and the uncalibrated date) is plotted. Defaults to topleft.</td>
</tr>
<tr>
<td>legend2.loc</td>
<td>Where the second legend (with the hpd ranges) is plotted. Defaults to topright.</td>
</tr>
<tr>
<td>mgp</td>
<td>Axis text margins (where should titles, labels and tick marks be plotted).</td>
</tr>
<tr>
<td>mar</td>
<td>Plot margins (amount of white space along edges of axes 1-4).</td>
</tr>
</tbody>
</table>
calibrate

xaxs Whether or not to extend the limits of the horizontal axis. Defaults to xaxs="i" which does not extend the limits.

yaxs Whether or not to extend the limits of the vertical axis. Defaults to yaxs="i" which does not extend the limits.

bty Draw a box around the graph ("n" for none, and "]", "l", "7", "e", "u", "]" or "o" for correspondingly shaped boxes).

Details

Type `calibrate()` to see how a date of 2450 ± 50 14C BP gets calibrated (the calibration curve happens to show a plateau around this 14C age). To calibrate a different date, provide its reported mean and error (1 standard deviation error as reported by the radiocarbon laboratory) as follows: `calibrate(mean,error)`, e.g., for a date of 130 ± 20 14C BP, type `calibrate(age=130,error=20)` or, shorter, `calibrate(130,20)`.

In case the date has a reservoir effect or age offset, e.g. of 100 14C years, provide this as follows: `calibrate(130,20,reservoir=100)`. If you want to include an uncertainty for this offset, provide this as follows, e.g., for an uncertainty of 50yr, `calibrate(130,20,reservoir=c(100,50))`. The uncertainty for the age offset will then be added to the error (by taking the square root of the sum of the squared error and the squared offset uncertainty). If the carbon of your sample has mixed marine/terrestrial sources, instead apply the marine offset using `mix.curves` and calibrate the date using that custom-built curve (cc="mixed").

If you prefer to work with, e.g., 68 % as opposed to the default 95 % confidence intervals, type: `calibrate(130,20,prob=0.68)` or `calibrate(130,20,,0.68)` (the commas between the brackets indicate the position of the option; the standard deviation is the fourth option of the `calibrate` function). The calibrated distribution can be calculated for every single calendar year (yrsteps=1) within a wide range of the 14C date. Probabilities below a threshold (default threshold=0.0005) will be neglected.

By default the northern hemisphere terrestrial calibration curve is used (cc=1 or cc1="IntCal20"). To use alternative curves, use cc2=2("Marine20"), cc3=3("SHCal20C"), cc4=4("mixed.14C"), or specify a postbomb curve (e.g., cc="nh1").

Calibrate works in cal BP (calendar years before AD 1950) by default, but can work with cal BC/AD through the option BCAD=TRUE.

By default the Gaussian distribution is used to calibrate dates. For use of the student-t distribution instead, provide two sensible values, e.g., calibt=c(3,4).

Calibrated distributions are usually reduced to their 68% or 95% calibrated ranges, taking into account the asymmetric and multi-peaked shape of these distributions. Calibrated ranges at 68% will obviously result in narrower confidence intervals, and a perceived higher precision, than 95% ranges. However, given the often asymmetric and multi-modal nature of calibrated distributions, the probability that the 'true' calendar date lies outside the 1 standard deviation hpd ranges is considerable (c. 32%). Therefore the use of 95% calibrated ranges is preferable, and default.

Negative radiocarbon ages are calibrated with postbomb curves, but the user needs to tell which curve to use. For example, to use the first of the three northern hemisphere curves, provide the option cc="nh1", cc="nh2", cc="nh3", while for southern hemisphere samples, use cc="sh1-2" or cc="sh3".
A graph of the calibration is produced, and it can be adapted in several ways. The limits of the horizontal (calendar scale) and vertical (14C scale) axes are calculated automatically but can be changed by providing alternative values for the options cal.lim, C14.lim. The titles of both axis can be changed by providing alternative titles to cal.lab and/or C14.lab. The heights of the distributions of the 14C and calibrated ages can be set to alternative values using dist.height (default 0.3 which plots the distribution up to 30% of the height of the entire graph). Parameters for white space around the graph can be changed (default mar=c(3.5, 2, 2, 1) for spacing below, to the left, above and to the right respectively), as can the spacing for the axis labels (mgp=c(2, 1, 0)). By default, the axes are connected at the lower left, bty="l". Check the R documentation of par() for more options.

The colours of the 14C date, the calibration curve, the distributions, and the highest posterior density (hpd) ranges, can be changed by providing an alternative colour in date.col, cc.col, dist.col, and/or hpd.col, respectively. The default colours are transparent grey for the dates probability distributions (dist.col=rgb(0, 0, 0, 0.3) and sd.col=rgb(0, 0, 0, 0.5); change the last value of rgb for different greyscale values), red for the uncalibrated mean and error bars (date.col="red"), and transparent green for the calibration curve (cc.col=rgb(0, 0.5, 0, 0.7)). R’s rgb() function expects values between 0 and 1 for red, green and blue, respectively, followed by a value for the semi-transparency (also between 0 and 1). Some graphic devices such as postscript are unable to use transparency; in that case provide different colours or leave the fourth value empty.

Value

A graph of the raw and calibrated C-14 date, the calibrated ranges and, invisibly, the calibrated distribution and hpd ranges.

Examples

```r
calibrate()
calibrate(130, 20)
cal <- calibrate(2550, 20, reservoir=100)
cal; plot(cal[[1]])
calibrate(130, 20, prob=0.68)
calibrate(age=130, error=20, BCAD=TRUE)
calibrate(4450, 40, reservoir=c(100, 50))
```

ccurve
Copy a calibration curve

Description

Copy one of the calibration curves into memory.

Usage

```r
ccurve(cc = 1, postbomb = FALSE)
```
Arguments

cc
Calibration curve for 14C dates: cc=1 for IntCal20 (northern hemisphere terrestrial), cc=2 for Marine20 (marine), cc=3 for SHCal20 (southern hemisphere terrestrial). Alternatively, one can also write, e.g., "IntCal20", "Marine13".

postbomb
Use postbomb=TRUE to get a postbomb calibration curve (default postbomb=FALSE). For monthly data, type e.g. ccurve("sh1-2_monthly")

Details

Copy the radiocarbon calibration curve defined by cc into memory.

Value

The calibration curve (invisible).

References

Hogg et al. 2013 SHCal13 Southern Hemisphere Calibration, 0–50,000 Years cal BP. Radiocarbon 55, 1889-1903. doi: 10.2458/azu_js_rc.55.16783

Hogg et al. 2020 SHCal20 Southern Hemisphere calibration, 0-55,000 years cal BP. Radiocarbon 62. doi: 10.1017/RDC.2020.59

Hughen et al. 2020 Marine20-the marine radiocarbon age calibration curve (0-55,000 cal BP). Radiocarbon 62. doi: 10.1017/RDC.2020.68

Levin and Kromer 2004 “The tropospheric 14CO2 level in mid latitudes of the Northern Hemisphere” Radiocarbon 46, 1261-1272

Reimer et al. 2004 IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46, 1029–1058. doi: 10.1017/S00338222200032999

Reimer et al. 2009 IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51, 1111–1150. doi: 10.1017/S00338222200034202

Reimer et al. 2013 IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887. doi: 10.2458/azu_js_rc.55.16947

Stuiver et al. 1998 INTCAL98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40, 1041-1083. doi: 10.1017/S00338222200019123
Examples

```r
intcal20 <- ccurve(1)
marine20 <- ccurve(2)
shcal20 <- ccurve(3)
marine98 <- ccurve("Marine98")
pb.sh3 <- ccurve("sh3")
```

copyCalibrationCurve Copy a calibration curve

Description

Copy one of the calibration curves into memory. Renamed to ccurve, and copyCalibrationCurve will become obsolete

Usage

```r
copyCalibrationCurve(cc = 1, postbomb = FALSE)
```

Arguments

- `cc` Calibration curve for 14C dates: `cc=1` for IntCal20 (northern hemisphere terrestrial), `cc=2` for Marine20 (marine), `cc=3` for SHCal20 (southern hemisphere terrestrial). Alternatively, one can also write, e.g., "IntCal20", "Marine13".
- `postbomb` Use `postbomb=TRUE` to get a postbomb calibration curve (default `postbomb=FALSE`).

Details

Copy the radiocarbon calibration curve defined by `cc` into memory.

Value

The calibration curve (invisible).

draw.ccurve Draw a calibration curve.

Description

Draw one or two of the calibration curves, or add a calibration curve to an existing plot.
draw.ccurve

Usage

draw.ccurve(
 cal1 = -50,
 cal2 = 55000,
 cc1 = "IntCal20",
 cc2 = NA,
 cc1.postbomb = FALSE,
 cc2.postbomb = FALSE,
 BCAD = FALSE,
 cal.lab = NA,
 cal.rev = FALSE,
 c14.lab = NA,
 c14.rev = FALSE,
 ka = FALSE,
 add.yaxis = FALSE,
 cc1.col = rgb(0, 0, 1, 0.5),
 cc1.fill = rgb(0, 0, 1, 0.2),
 cc2.col = rgb(0, 0.5, 0, 0.5),
 cc2.fill = rgb(0, 0.5, 0, 0.2),
 add = FALSE,
 bty = "l",
 ...
)

Arguments

cal1 First calendar year for the plot

cal2 Last calendar year for the plot

cc1 Name of the calibration curve. Can be "IntCal20", "Marine20", "SHCal20",
 or for the previous curves "IntCal13", "Marine13" or "SHCal13". Can also be
 "nh1", "nh2", "nh3", "sh1-2", "sh3", "nh1_monthly", "nh1_monthly", "nh2_monthly",
 "nh3_monthly", "sh1-2_monthly", "sh3_monthly", "Kure", "LevinKromer" or
 "Santos" for postbomb curves.

cc2 Optional second calibration curve to plot. Can be "IntCal20", "Marine20",
 "SHCal20", or for the previous curves "IntCal13", "Marine13" or "SHCal13".
 Defaults to nothing, NA.

cc1.postbomb Use postbomb=TRUE to get a postbomb calibration curve for cc1 (default cc1.postbomb=FALSE).
cc2.postbomb Use postbomb=TRUE to get a postbomb calibration curve for cc2 (default cc2.postbomb=FALSE).

BCAD The calendar scale of graphs and age output-files is in cal BP (calendar or cal-
 librated years before the present, where the present is AD 1950) by default, but
 can be changed to BC/AD using BCAD=TRUE.

cal.lab The labels for the calendar axis (default age.lab="cal BP" or "BC/AD" if BCAD=TRUE),
 or to age.lab="kcal BP" etc. if ka=TRUE.

cal.rev Reverse the calendar axis.

c14.lab Label for the C-14 axis. Defaults to 14C BP (or 14C kBP if ka=TRUE).
draw.dates

Add individual calibrated dates to a plot.

Usage

draw.dates(
 age,
 error,
 depth,
 cc = 1,
 postbomb = FALSE,
 reservoir = c(),
 calibt = c(),
 prob = 0.95,
 threshold = 0.001,
 BCAD = FALSE,
 ex = 0.9,
)
Arguments

age Mean of the uncalibrated C-14 age (or multiple ages).
error Error of the uncalibrated C-14 age (or ages).
depth Depth(s) of the date(s)
cc Calibration curve for C-14 dates (1, 2, 3, or 4, or, e.g., "IntCal20", "Marine20", "SHCal20", "nh1", "sh3", or "mixed"). If there are multiple dates but all use the same calibration curve, one value can be provided.
postbomb Whether or not this is a postbomb age. Defaults to FALSE.
reservoir Reservoir age, or reservoir age and age offset.
calibt Calibration based on the student-t distribution. By default, the Gaussian distribution is used (calibt=FALSE). To use the student-t distribution, provide two parameters such as calibt=c(3,4).
prob Probability confidence intervals (between 0 and 1).
threshold Report only values above a threshold. Defaults to threshold=0.001.
BCAD Use BC/AD or cal BP scale (default cal BP).
ex Exaggeration of the height of the distribution
normalise If TRUE, the date is normalised by setting its peak value to 1 (handy for estimating how high to draw it). If there are multiple dates, it is normalised to the
peak of the most precise date. Otherwise the peak of each date is at the same height.

draw.hpd Whether or not to draw the hpd ranges as a line
hpd.lwd Width of the line of the hpd ranges
hpd.col Colour of the hpd rectangle
mirror Plot distributions mirrored, a bit like a swan. Confuses some people but looks nice to the author so is the default.
up If mirror is set to FALSE, the distribution can be plotted up or down, depending on the direction of the axis.
on.axis Which axis to plot on. Defaults to ‘x’ or 1, but can be set to ‘y’ or 2.
col Colour of the inside of the distribution
border Colour of the border of the distribution
add Whether or not to add the dates to an existing plot. If set to FALSE (default), a plot will be set up.
cal.lab Title of the calendar axis (if present)
cal.lim Limits of the calendar axis (if present)
y.lab Title of the vertical axis (if present)
y.lim Limits of the vertical axis (if present)
y.rev Reverse the y-axis. Defaults to TRUE
labels Add labels to the dates. Empty by default.
label.x Horizontal position of the date labels. By default draws them before the youngest age (1), but can also draw them after the oldest age (2), or above its mean (3).
label.y Vertical positions of the labels. Defaults to 0 (or 1 if label.x is 3 or 4).
label.cex Size of labels.
label.col Colour of the labels. Defaults to the colour given to the borders of the dates.
label.offset Offsets of the positions of the labels, giving the x and y offsets. Defaults to c(0,0).
label.adj Justification of the labels. Follows R’s adj option: ‘0’ produces left-justified text, ‘0.5’ (the default) centered text and ‘1’ right-justified text.
label.rot Rotation of the label. 0 by default (horizontal).
... Additional plotting options

Examples

plot(0, xlim=c(500,0), ylim=c(0, 2))
draw.dates(130, 20, depth=1)
Description

Produce a custom curve by merging two calibration curves, e.g. a prebomb and a postbomb one for dates which straddle both curves.

Usage

```r
glue.ccurves(prebomb = "IntCal20", postbomb = "NH1")
```

Arguments

- `prebomb`: The prebomb curve. Defaults to "IntCal20"
- `postbomb`: The postbomb curve. Defaults to "NH1" (Hua et al. 2013)

Value

The custom-made curve (invisibly)

Examples

```r
my.cc <- glue.ccurves()
```

hpd

Calculate highest posterior density

Description

Calculate highest posterior density ranges of calibrated distribution

Usage

```r
hpd(calib, prob = 0.95, return.raw = FALSE, rounded = 1)
```

Arguments

- `calib`: The calibrated distribution, as returned from caldist()
- `prob`: Probability range which should be calculated. Default `prob=0.95`.
- `return.raw`: The raw data to calculate hpds can be returned, e.g. to draw polygons of the calibrated distributions. Defaults to `return.raw=FALSE`.
- `rounded`: Rounding for reported probabilities. Defaults to 1 decimal.
Examples

```r
hpd(caldist(130, 20))
plot(tmp <- caldist(2450, 50), type='l')
abline(v=hpd(tmp)$[,1:2], col=4)
```

Description

The international IntCal research group publishes ratified radiocarbon calibration curves such as IntCal20, Marine20 and SHCal20 (Reimer et al. 2020). This data package provides the files of these curves, for use by other R package (reducing the need for replication and the size of other packages that use IntCal). It also comes with a limited number of relevant functions, to read in calibration curves, translate pMC ages to 14C ages (et vice versa), etc.

Author(s)

Maarten Blaauw <maarten.blaauw@qub.ac.uk>

```
intcal.data
```

Description

plot the C14 ages underpinning the IntCal20/Marine20/SHCal20 calibration curves

Usage

```r
intcal.data(
  cal1,
  cal2,
  cc1 = "IntCal20",
  cc2 = NA,
  calcurve.data = "IntCal20",
  BCAD = FALSE,
  cal.lab = NA,
  cal.rev = FALSE,
  c14.lab = NA,
  c14.rev = FALSE,
  ka = FALSE,
  cc1.col = rgb(0, 0, 1, 0.5),
  cc1.fill = rgb(0, 0, 1, 0.2),
  cc2.col = rgb(0, 0.5, 0, 0.5),
)```
Arguments

cal1 First calendar year for the plot

cal2 Last calendar year for the plot

cc1 Name of the calibration curve. Can be "IntCal20", "Marine20", "SHCal20", or for the previous curves "IntCal13", "Marine13" or "SHCal13".

cc2 Optional second calibration curve to plot. Can be "IntCal20", "Marine20", "SHCal20", or for the previous curves "IntCal13", "Marine13" or "SHCal13". Defaults to nothing, NA.

calcurve.data Which dataset to use. Defaults to calcurve.data="IntCal20", but can also be calcurve.data="SHCal20". Note that Marine20 is based on IntCal20 and a marine carbon cycle model.

BCAD The calendar scale of graphs and age output-files is in cal BP (calendar or calibrated years before the present, where the present is AD 1950) by default, but can be changed to BC/AD using BCAD=TRUE.

cal.lab The labels for the calendar axis (default age.lab="cal BP" or "BC/AD" if BCAD=TRUE), or to age.lab="kcal BP" etc. if ka=TRUE.

cal.rev Reverse the calendar axis.

c14.lab Label for the C-14 axis. Defaults to 14C BP (or 14C kBP if ka=TRUE).

c14.lim Axis limits for the C-14 axis. Calculated automatically by default.

c14.rev Reverse the C-14 axis.

ka Use kcal BP (and C14 kBP).

cc1.col Colour of the calibration curve (outline).

cc1.fill Colour of the calibration curve (fill).

cc2.col Colour of the calibration curve (outline), if activated (default cc2=NA).

cc2.fill Colour of the calibration curve (fill), if activated (default cc2=NA).

data.cols colours of the data points. Defaults to R’s colours 1 to 8 (black, red, green, darkblue, lightblue, purple, orange, and grey)

data.pch Symbols of the data points. Defaults to R’s symbols 1, 2, 5, 6, and 15 to 19 (open circle, open upward triangle, open diamond, open downward triangle, closed square, closed circle, closed upward triangle, closed diamond)
pch.cex           Size of the data symbols. Defaults to 0.5.
legend.loc       Location of the data legend. Defaults to topleft. Set to NA for no plotting.
legend.ncol      Number of columns of the data legend.
legend.cex       Size of the legend. Defaults to 0.7.
cc.legend        Location of the legend for the calibration curve(s).
bty              Box type around the plot. Defaults to "l"-shaped.
...              Any additional optional plotting parameters.

Details

These datasets were downloaded from Intcal.org. All data have both uncertainties in C14 age and on the calendar scale. For trees this is the sample thickness (e.g., 10 years or 1 year). The name of each dataset starts with a lower-case letter which indicates their nature (t = tree-rings, l = lake sediment, c = coral, m = marine sediment, s = speleothem), followed by either the radiocarbon laboratory’s placename or the lastname of the main author. Most of the tree-ring datasets are dated at calendar year precision; tSeattle (references 1-2), tBelfast (3-5), tWaikato (4-7), tGroningen (8-10), tHeidelberg (11-14), tPretoria (16), tIrvin 17 (17-20), tGalimberti (21), tMannheim (22-25), tAix (26-27), tAarhus (22, 28-30), tManningKromer (31-32), tVienna (33-34), tTokyo (35-39), tArizona (40), tMiyake (41), tPearson (22, 41-45), and tZurich (22-23, 25, 41, 43, 46-49). Horizontal error bars for these series indicate the numbers of rings in the samples (e.g., 10 tree-rings; 1-yr samples do not have error bars). Additionally, there are some floating tree-ring datasets with imprecisely known calendar ages; tAdolphy (50) and tTurney (51-52). For these and the following datasets, horizontal error bars indicate their 1 sd calendar age uncertainties. Beside trees, other datasets include lake sediment (lSuigestu, 53-54), corals (cBard 55-56, cFairbanks 57, cCutler 58 and cDurand 61, marine sediment (mCariaco 59-60, 62-63, mBard 64-65) and speleothems (sSouthon 66-67, sHoffman 68, sBeck 69). The southern hemisphere calibration curve SHCal20 is mostly modelled on IntCal20, but it contains datasets from the southern hemisphere; tPretoria (70), tWaikato (72-75), tBelfast (76-77), tSydney (78-80), tLivermore (81), tArizona, tIrvinWaikato and tZurich (82-83).

References


[20] Simon M. Fahmri, John Southon, Benjamin T. Fuller, Junghun Park, Michael Friedrich, Raimund Muscheler, Lukas Wacker, R. E. Taylor;Single-year German oak and Californian bristlecone pine 14C data at the beginning of the Hallstatt plateau from 856 BC to 626 BC; Radiocarbon


[34] Steier, P., Dellinger, F., Kutschera, W., Priller, A., Rom, W., and Wild, E M, 2004 Pushing the precision limit of 14C AMS, Radiocarbon, 46, 5-17


[46] Wacker et al. in prep


[49] Bayliss et al. in prep


[63] Hughen, K, Heaton, TJ. Updated Cariaco Basin 14C Calibration Dataset from 0-60k BP, in prep


[80] Hogg et al. 2013 SHCal13 Southern Hemisphere calibration, 0-50,000 cal yr BP. Radiocarbon 55, 2


Examples

```
intcal.data(100, 200)
intcal.data(40e3, 55e3, ka=TRUE)
```
list.ccurves

**List the calibration curves**

**Description**

List the file names of the calibration curves available within the IntCal package.

**Usage**

```r
list.ccurves()
```

mix.ccurves

**Build a custom-made, mixed calibration curve.**

**Description**

If two curves need to be ‘mixed’ to calibrate, e.g. for dates of mixed terrestrial and marine carbon sources, then this function can be used. The curve will be saved, together with the main calibration curves, in a temporary directory. This temporary directory then has to be specified in further commands, e.g. for rbacon: `Bacon(,ccdir=tmpdr)` (see examples). It is advisable to make your own curves folder and have cedir point to that folder.

**Usage**

```r
mix.ccurves(
 proportion = 0.5,
 cc1 = "IntCal20",
 cc2 = "Marine20",
 name = "mixed.14C",
 dir = c(),
 offset = c(0, 0),
 sep = "\t"
)
```

**Arguments**

- **proportion** Proportion of the first calibration curve required. e.g., change to `proportion=0.7` if `cc1` should contribute 70% (and `cc2` 30%) to the mixed curve.
- **cc1** The first calibration curve to be mixed. Defaults to the northern hemisphere terrestrial curve IntCal20.
- **cc2** The second calibration curve to be mixed. Defaults to the marine curve IntCal20.
- **name** Name of the new calibration curve.
- **dir** Name of the directory where to save the file. Since R does not allow automatic saving of files, this points to a temporary directory by default. Adapt to your own folder, e.g., `dir="~/Curves"` or in your current working directory, `dir="."`.
- **offset** Any offset and error to be applied to `cc2` (default 0 +- 0).
- **sep** Separator between fields (tab by default, "\t")
Details

The proportional contribution of each of both calibration curves has to be set.

Value

A file containing the custom-made calibration curve, based on calibration curves cc1 and cc2.

Examples

```r
mix.ccurves()
tmpdir <- tempdir()
mix.ccurves(dir=tmpdir)
clean up:
unlink(tmpdir)
```

## pMC.age

*Calculate C14 ages from pMC values.*

### Description

Calculate C14 ages from pMC values of radiocarbon dates.

### Usage

```r
pMC.age(mn, sdev, ratio = 100, decimals = 0)
```

### Arguments

- `mn` : Reported mean of the pMC.
- `sdev` : Reported error of the pMC.
- `ratio` : Most modern-date values are reported against 100. If it is against 1 instead, use 1 here.
- `decimals` : Amount of decimals required for the radiocarbon age.

### Details

Post-bomb dates are often reported as pMC or percent modern carbon. Since Bacon expects radiocarbon ages, this function can be used to calculate radiocarbon ages from pMC values. The reverse function is `age.pMC`.

### Value

Radiocarbon ages from pMC values. If pMC values are above 100%, the resulting radiocarbon ages will be negative.

### See Also

[http://www.qub.ac.uk/chrono/blaauw/manualBacon_2.3.pdf](http://www.qub.ac.uk/chrono/blaauw/manualBacon_2.3.pdf)
Examples

pMC.age(110, 0.5) # a postbomb date, so with a negative 14C age
pMC.age(80, 0.5) # prebomb dates can also be calculated
pMC.age(.8, 0.005, 1) # pMC expressed against 1 (not against 100\%)
Index

age.pMC, 2, 25

calBP.14C, 3
caldist, 3
calibrate, 4
ccurve, 8
copyCalibrationCurve, 10
draw.ccurve, 10
draw.dates, 12
glue.ccurves, 15

hpd, 15

IntCal, 16
intcal.data, 16

list.ccurves, 24
mix.ccurves, 24

pMC.age, 2, 25