Package ‘LFApp’

November 6, 2023

Version 1.4
Date 2023-11-06
Title Shiny Apps for Lateral Flow Assays
Author Filip Paskali [aut, cre] (https://orcid.org/0000-0002-9647-6294),
Weronika Scharz [aut] (https://orcid.org/0000-0002-7229-316X),
Matthias Kohl [aut] (https://orcid.org/0000-0001-9514-8910)
Maintainer Filip Paskali <Filip.Paskali@gmail.com>
Description Shiny apps for the quantitative analysis of images from lateral flow assays (LFAs). The images are segmented and background corrected and color intensities are extracted. The apps can be used to import and export intensity data and to calibrate LFAs by means of linear, loess, or gam models. The calibration models can further be saved and applied to intensity data from new images for determining concentrations.
License LGPL-3
Depends R (>= 4.0.0)
Imports stats, utils, graphics, methods, mgcv, shiny, shinyjs,
 shinythemes, shinyFiles, shinyMobile (>= 0.9), EBImage, DT,
 ggplot2, fs
Suggests knitr, rmarkdown, remotes
VignetteBuilder knitr
Encoding UTF-8
URL https://github.com/fpaskali/LFApp
BugReports https://github.com/fpaskali/LFApp/issues
NeedsCompilation no
Repository CRAN
Date/Publication 2023-11-06 13:50:02 UTC

R topics documented:

LFApp-package ... 2
run_functions ... 2
threshold_li ... 3
triangle ... 4
Shiny apps for the quantitative analysis of images from lateral flow assays (LFAs). The images are segmented and background corrected and color intensities are extracted. The apps can be used to import and export intensity data and to calibrate LFAs by means of linear, loess, or gam models. The calibration models can further be saved and applied to intensity data from new images for determining concentrations.

Details

```r
library(LFApp)
```

Author(s)

Filip Paskali, Weronika Schary, Matthias Kohl

Maintainer: Filip Paskali <Filip.Paskali@gmail.com>

run functions

Description

Function start the Analysis Shiny App.

Usage

```r
run_analysis()
run_cal()
run_core()
run_quan()
run_mobile_analysis()
run_mobile_cal()
run_mobile_core()
run_mobile_quan()
```

Details

The functions start the various shiny apps included in the package.

Value

An object that represents the app. Printing the object will run the app.
threshold_li

Author(s)
Filip Paskali <Filip.Paskali@gmail.de>, Weronika Schary <W.Schary@hs-furtwangen.de>, Matthias Kohl <Matthias.Kohl@stamats.de>

Examples

```r
if(interactive()){
  ## start full analysis app
  run_analysis()
  ## start mobile version of full analysis app
  run_mobile_analysis()
}
```

<table>
<thead>
<tr>
<th>threshold_li</th>
<th>Li Thresholding Algorithm</th>
</tr>
</thead>
</table>

Description

The function computes a background threshold of an image by using Li’s iterative minimum cross entropy method.

Usage

```r
threshold_li(image, tolerance = NULL, initial_guess = NULL, iter_callback = NULL)
```

Arguments

- `image`: object of class `Image` from package EBImage.
- `tolerance`: optional tolerance threshold.
- `initial_guess`: optional initial value for the minimization.
- `iter_callback`: optional function applied to the minimization criterion.

Details

For more details about the method see Li and Lee (1993) as well as Li and Tam (1998).

Value

numeric vector with the computed threshold.

Author(s)

Filip Paskali <Filip.Paskali@gmail.de>
References

Examples

```r
library(EBImage)
x <- readImage(system.file("images", "sample.TIF", package="LFApp"))
threshold_li(x)
```

triangle
Triangle Thresholding Algorithm

Description

The function computes a background threshold of an image using the triangle algorithm.

Usage

```r
triangle(image, offset = 0.2, breaks = 256)
```

Arguments

- `image` object of class `Image` from package EBImage.
- `offset` numeric, additional offset added to the computed threshold.
- `breaks` integer, number of breaks used in the histogram.

Details

The Triangle method is based on the histogram of the intensities. Based on the range of intensities and the maximum peak a threshold is determined. The method was proposed in Zack et al. (1977).

Value

numeric vector with the computed threshold.

Author(s)

Matthias Kohl <Matthias.Kohl@stamats.de>

References

triangle

Examples

```r
library(EBImage)
x <- readImage(system.file("images", "sample.TIF", package="LFApp"))
triangle(x)
```
Index

* dynamic
 run_functions, 2
* package
 LFApp-package, 2
* univar
 threshold_li, 3
 triangle, 4

LFApp (LFApp-package), 2
LFApp-package, 2
run_analysis (run_functions), 2
run_cal (run_functions), 2
run_core (run_functions), 2
run_functions, 2
run_mobile_analysis (run_functions), 2
run_mobile_cal (run_functions), 2
run_mobile_core (run_functions), 2
run_mobile_quan (run_functions), 2
run_quan (run_functions), 2
threshold_li, 3
triangle, 4