Package ‘LIC’

October 8, 2021

Title The LIC Criterion for Optimal Subset Selection
Version 0.0.1
Description The LIC criterion is to determine the most informative subsets so that the subset can retain most of the information contained in the complete data. The philosophy of the package is described in Guo G. (2020) <doi:10.1007/s00180-020-00974-4>.
License MIT + file LICENSE
Encoding UTF-8
LazyData true
RoxygenNote 7.1.2
Imports stats
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
NeedsCompilation no
Author Guangbao Guo [aut, cre], Yue Sun [aut], Guoqi Qian [aut], Qian Wang [aut]
Maintainer Guangbao Guo <ggb11111111@163.com>
Depends R (>= 3.5.0)
Repository CRAN
Date/Publication 2021-10-08 17:50:02 UTC

R topics documented:

airfoil .. 2
estate ... 3
gt2015 ... 4
LIC .. 5
Opt1 .. 6
Opt2 .. 6
OSA .. 7
OSM .. 8
Description

The Airfoil self-noise data set

Usage

data("airfoil")

Format

A data frame with 1503 observations on the following 6 variables.

V1 a numeric vector
V2 a numeric vector
V3 a numeric vector
V4 a numeric vector
V5 a numeric vector
V6 a numeric vector

Details

The data set contains 1503 data points, including the 6 variables. Among them, the scaled sound pressure level is the dependent variable and the other five are independent variables.

Source

The Airfoil Self-Noise data set is from the NASA data set in UCI database.

References

Examples

data(airfoil)
maybe str(airfoil) ; plot(airfoil) ...
Description

The real estate valuation data set.

Usage

data("estate")

Format

A data frame with 414 observations on the following 8 variables.

- No a numeric vector
- X1.transaction.date a numeric vector
- X2.house.age a numeric vector
- X3.distance.to.the.nearest.MRT.station a numeric vector
- X4.number.of.convenience.stores a numeric vector
- X5.latitude a numeric vector
- X6.longitude a numeric vector
- Y.house.price.of.unit.area a numeric vector

Details

Real estate valuation data set contains information about 414 real estate prices of 5 independent variables. The dependent variable is the price per unit area.

Source

The data set is from Xindian District, New Taipei City, Taiwan.

References

Examples

data(estate)
maybe str(estate) ; plot(estate) ...
Gas turbine NOx emission

Description
The gas turbine NOx emission data set.

Usage
data("gt2015")

Format
A data frame with 7384 observations on the following 11 variables.

- AT: a numeric vector
- AP: a numeric vector
- AH: a numeric vector
- AFDP: a numeric vector
- GTEP: a numeric vector
- TIT: a numeric vector
- TAT: a numeric vector
- TEY: a numeric vector
- CDP: a numeric vector
- CO: a numeric vector
- NOX: a numeric vector

Details
To predict nitrogen oxide emissions, we use the gas turbine NOx emission data set in UCI database, which contains 36,733 instances of 11,733 sensor measurements. The pollutant emission factors of gas turbines include 9 variables. We select 7,200 data points in 2015.

Source
The gas turbine NOx emission data set is from UCI database.

References
NA

Examples
data(gt2015)
maybe str(gt2015); plot(gt2015) ...
LIC

The LIC criterion is to determine the most informative subsets so that the subset can retain most of the information contained in the complete data.

Description
The LIC criterion is to determine the most informative subsets so that the subset can retain most of the information contained in the complete data.

Usage
LIC(X, Y, alpha, K, nk)

Arguments
X is a design matrix
Y is a random response vector of observed values
alpha is the significance level
K is the number of subsets
nk is the sample size of subsets

Value
MUopt, Bopt, MAEMUopt, MSEMUopt, opt, Yopt

Examples
set.seed(12)
X=matrix(data=sample(1:3,1200*5, replace = TRUE) ,nrow=1200,ncol=5)
b=sample(1:3,5, replace = TRUE)
e= rnorm(1200, 0, 1)
Y=X%*%b+e
alpha=0.05
K=10
nk=1200/K
LIC(X,Y,alpha,K,nk)
The Opt1 chooses the optimal index subset based on minimized interval length.

Usage

Opt1(X, Y, alpha, K, nk)

Arguments

- **X** is a design matrix
- **Y** is a random response vector of observed values
- **alpha** is the significance level
- **K** is the number of subsets
- **nk** is the sample size of subsets

Value

MUopt1, Bopt1, MAEMUopt1, MSEMUopt1, opt1, Yopt1

Examples

```r
set.seed(12)
X=matrix(data=sample(1:3,1200*5, replace = TRUE) ,nrow=1200,ncol=5)
b=sample(1:3,5, replace = TRUE)
e= rnorm(1200, 0, 1)
Y=X%*%b+e
alpha=0.05
K=10
nk=1200/K
Opt1(X,Y,alpha,K,nk)
```

The Opt2 chooses the optimal index subset based on maximized information sub-matrix.

Description

The Opt2 chooses the optimal index subset based on maximized information sub-matrix.
OSA

Usage

Opt2(X, Y, alpha, K, nk)

Arguments

X is a design matrix
Y is a random response vector of observed values
alpha is the significance level
K is the number of subsets
nk is the sample size of subsets

Value

MUopt2, Bopt2, MAEMUopt2, MSEMUopt2, opt2, Yopt2

Examples

set.seed(12)
X=matrix(data=sample(1:3,1200*5, replace = TRUE) ,nrow=1200,ncol=5)
b=sample(1:3,5, replace = TRUE)
e= rnorm(1200, 0, 1)
Y=X%*%b+e
alpha=0.05
K=10
nk=1200/K
Opt2(X,Y,alpha,K,nk)

OSA

The OSA gives a simple average estimator is by averaging all these least squares estimators.

Description

The OSA gives a simple average estimator is by averaging all these least squares estimators.

Usage

OSA(X, Y, alpha, K, nk)

Arguments

X is a design matrix
Y is a random response vector of observed values
alpha is the significance level
K is the number of subsets
nk is the sample size of subsets
Value

MUA,BetaA,MAEMUA,MSEMUA

Examples

```r
set.seed(12)
X=matrix(data=sample(1:3,1200*5, replace = TRUE) ,nrow=1200,ncol=5)
b=sample(1:3.5, replace = TRUE)
e= rnorm(1200, 0, 1)
Y=X%*%b+e
alpha=0.05
K=10
nk=1200/K
OSM(X,Y,alpha,K,nk)
```

OSM

The OSM is a median processing method for the central processor.

Description

The OSM is a median processing method for the central processor.

Usage

```r
OSM(X, Y, alpha, K, nk)
```

Arguments

- **X**: is a design matrix
- **Y**: is a random response vector of observed values
- **alpha**: is the significance level
- **K**: is the number of subsets
- **nk**: is the sample size of subsets

Value

MUM,BetaM,MAEMUM,MSEMUM

Examples

```r
set.seed(12)
X=matrix(data=sample(1:3,1200*5, replace = TRUE) ,nrow=1200,ncol=5)
b=sample(1:3.5, replace = TRUE)
e= rnorm(1200, 0, 1)
Y=X%*%b+e
alpha=0.05
K=10
nk=1200/K
OSM(X,Y,alpha,K,nk)
```
Index

* datasets
 - airfoil, 2
 - estate, 3
 - gt2015, 4

airfoil, 2
estate, 3
gt2015, 4
LIC, 5
Opt1, 6
Opt2, 6
OSA, 7
OSM, 8