Package ‘LPRelevance’

April 23, 2021

Type Package
Title Relevance-Integrated Statistical Inference Engine
Version 3.2
Date 2021-04-08
Author Subhadeep Mukhopadhyay, Kaijun Wang
Maintainer Kaijun Wang <kaijunwang.19@gmail.com>
Description Provide methods to perform customized inference at individual level by taking contextual covariates into account. Three main functions are provided in this package: (i) LASER(): it generates specially-designed artificial relevant samples for a given case; (ii) g2l.proc(): computes customized fdr(z|x); and (iii) rEB.proc(): performs empirical Bayes inference based on LASERs. The details can be found in Mukhopadhyay, S., and Wang, K (2021, <arXiv:2004.09588>).
Imports leaps,locfdr,Bolstad2,reshape2,ggplot2,polynom,glmnet,caret
Depends R (>= 3.5.0), stats, BayesGOF, MASS
License GPL-2
NeedsCompilation no
Repository CRAN
Date/Publication 2021-04-22 22:10:02 UTC

R topics documented:

LPRelevance-package .. 2
data.dti ... 2
funnel ... 3
g2l.proc .. 3
kidney ... 6
LASER ... 7
rEB.Finite.Bayes .. 8
rEB.proc .. 10

Index 13
Description

How to individualize a global inference method? The goal of this package is to provide a systematic recipe for converting classical global inference algorithms into customized ones. It provides methods that perform individual level inferences by taking contextual covariates into account. At the heart of our solution is the concept of "artificially-designed relevant samples", called LASERs—which pave the way to construct an inference mechanism that is simultaneously efficiently estimable and contextually relevant, thus works at both macroscopic (overall simultaneous) and microscopic (individual-level) scale.

Author(s)

Subhadeep Mukhopadhyay, Kaijun Wang
Maintainer: Kaijun Wang <kaijunwang.19@gmail.com>

References

data.dti DTI data.

Description

A diffusion tensor imaging study comparing brain activity of six dyslexic children versus six normal controls. Two-sample tests produced z-values at \(N = 15443 \) voxels (3-dimensional brain locations), with each \(z_i \sim N(0, 1) \) under the null hypothesis of no difference between the dyslexic and normal children.

Usage

data(data.dti)

Format

A data frame with 15443 observations on the following 4 variables.

coordx A list of x coordinates
coordy A list of y coordinates
coordz A list of z coordinates
z The z-values.
funnel

Source

References

funnel A stylized simulated example.

Description
A large-scale heterogeneous dataset used in our paper.

Usage
data("funnel")

Format
A data frame with 3565 observations on the following 3 variables.
x A list of covariate values.
z A list of z-values.
tags Binary vector of labels, 1 indicates a data point is a signal.

References

g2l.proc Procedures for global and local inference.

Description
This function performs customized fdr analyses tailored to each individual cases.

Usage
g2l.proc(X, z, X.target = NULL, z.target = NULL, m = c(4, 6), alpha = 0.1, nbag = NULL, nsample = length(z), lp.reg.method = "lm", null.scale = "QQ", approx.method = "direct", ngrid = 2000, centering = TRUE, coef.smooth = "BIC", fdr.method = "locfdr", plot = TRUE, rel.null = "custom", locfdr.df = 10, fdr.th.fixed = NULL, parallel = FALSE, ...)
Arguments

\(X\)
A \(n\)-by-\(d\) matrix of covariate values

\(z\)
A length \(n\) vector containing observations of \(z\) values.

\(X.\text{target}\)
A \(k\)-by-\(d\) matrix providing \(k\) sets of covariates for target cases to investigate. Set to NULL to investigate all cases and provide global inference results.

\(z.\text{target}\)
A vector of length \(k\), providing the target \(z\) values to investigate

\(m\)
An ordered pair. First number indicates how many LP-nonparametric basis to construct for each \(X\), second number indicates how many to construct for \(z\). Default: \(m=c(4, 6)\).

\(\alpha\)
Confidence level for determining signals.

\(\text{nbag}\)
Number of bags of parametric bootstrapped samples to use for each target case, each time a new set of relevance samples will be generated for analysis, and the resulting fdr curves are aggregated together by taking the mean values. Set to NULL to disable.

\(\text{nsample}\)
Number of relevance samples generated for each case. The default is the size of the input z-statistic.

\(\text{lp.reg.method}\)
Method for estimating the relevance function and its conditional LP-Fourier coefficients. We currently support three options: \(\text{lm}\) (inbuilt with subset selection), glmnet, and \(\text{knn}\).

\(\text{null.scale}\)
Method of estimating null standard deviation from the laser samples. Available options: "IQR", "QQ" and "lofcfr"

\(\text{approx.method}\)
Method used to approximate customized fdr curve, default is "direct". When set to "indirect", the customized fdr is computed by modifying pooled fdr using relevant density function.

\(\text{ngrid}\)
Number of gridpoints to use for computing customized fdr curve.

\(\text{centering}\)
Whether to perform regression-adjustment to center the data, default is TRUE.

\(\text{coef.smooth}\)
Specifies the method to use for LP coefficient smoothing (AIC or BIC). Uses BIC by default.

\(\text{fdr.method}\)
Method for controlling false discoveries (either "lofdr" or "BH"), default choice is "lofdr".

\(\text{plot}\)
Whether to include plots in the results, default is TRUE.

\(\text{rel.null}\)
How the relevant null changes with \(x\): "custom" denotes we allow it to vary with \(x\), and "th" denotes fixed.

\(\text{lofcfr.d}\)
Degrees of freedom to use for locfdr()

\(\text{fdr.th.fixed}\)
Use fixed fdr threshold for finding signals. Default set to NULL, which finds different thresholds for different cases.

\(\text{parallel}\)
Use parallel computing for obtaining the relevance samples, mainly used for very huge nsample, default is FALSE.

\(\ldots\)
Extra parameters to pass to other functions. Currently only supports the arguments for \(\text{knn}\()\).
Value

A list containing the following items:

- **macro**
 - Available when `X.target` set to NULL, contains the following items:
 - **result**
 - A list of global inference results:
 - **X**
 - Matrix of covariates, same as input `X`.
 - **z**
 - Vector of observations, same as input `z`.
 - **probnull**
 - A vector of length `n`, indicating how likely the observed `z` belongs to local null.
 - **signal**
 - A binary vector of length `n`, discoveries are indicated by 1.

- **plots**
 - A list of plots for global inference:
 - **signal_x**
 - A plot of signals discovered, marked in red
 - **dps_xz**
 - A scatterplot of `z` on `x`, colored based on the discovery propensity scores, only available when `fdr.method = "locfdr"`.
 - **dps_x**
 - A scatterplot of discovery propensity scores on `x`, only available when `fdr.method = "locfdr"`.

- **micro**
 - Available when `X.target` are provided with values, contains the following items:
 - **result**
 - Customized estimates for null probabilities for target `X` and `z`
 - **result$signal**
 - A binary vector of length `k`, discoveries in the target cases are indicated by 1
 - **global**
 - Pooled global estimates for null probabilities for target `X` and `z`
 - **plots**
 - Customized fdr plots for the target cases.

- **m.lp**
 - Same as input `m`

Author(s)

Subhadeep Mukhopadhyay, Kaijun Wang
Maintainer: Kaijun Wang <kaijunwang.19@gmail.com>

References

Mukhopadhyay, S., and Wang, K (2021) "On The Problem of Relevance in Statistical Inference".

Examples

data(funnel)
X<-funnel$x
z<-funnel$z
##macro-inference using locfdr and LASER:
g2l_macro<-g2l.proc(X,z)
g2l_macro$macro$plots
Microinference for the DTI data: case A with x=(18,55) and z=3.95

data(data.dti)
X<- cbind(data.dti$coordx,data.dti$coordy)
z<-data.dti$z
g2l_x<-g2l.proc(X,z,X.target=c(18,55),z.target=3.95,nsample =3000)
g2l_x$micro$plots$fdr.1+ggplot2::coord_cartesian(xlim=c(0,4))
g2l_x$micro$result[4]

Kidney data.

Description
This data set records age and kidney function of N = 157 volunteers. Higher scores indicates better function.

Usage
data(kidney)

Format
A data frame with 157 observations on the following 2 variables.

x A list of patients' age.

z A list of kidney scores.

Source

References

Description

This function generates the artificial relevance samples (LASER). These are "sharpened" z-samples manufactured by the relevance-function $d_x(z)$.

Usage

```r
LASER( X, z, X.target, m=c(4,6), nsample=length(z), lp.reg.method='lm',
       coef.smooth='BIC', centering=TRUE, parallel=FALSE, ...)
```

Arguments

- `X`: A n-by-d matrix of covariate values
- `z`: A length n vector containing observations of z values.
- `X.target`: A k-by-d matrix providing k sets of target points for which the LASERs are required.
- `m`: An ordered pair. First number indicates how many LP-nonparametric basis to construct for each X, second number indicates how many to construct for z. Default: $m=c(4,6)$
- `nsample`: Number of relevance samples to generate for each case.
- `lp.reg.method`: Method for estimating the relevance function and its conditional LP-Fourier coefficients. We currently support thee options: lm (inbuilt with subset selection), glmnet, and knn.
- `centering`: Whether to perform regression-adjustment to center the data, default is TRUE.
- `coef.smooth`: Specifies the method to use for LP coefficient smoothing (AIC or BIC). Uses BIC by default.
- `parallel`: Use parallel computing for obtaining the relevance samples, mainly used for very huge `nsample`, default is FALSE.
- `...`: Extra parameters to pass to other functions. Currently only supports the arguments for `knn()`.

Value

A list containing the following items:

- `data`: The relevant samples at `X.target`
- `LPcoef`: Parameters of the relevance function $d_x(x)$.

Author(s)

Subhadeep Mukhopadhyay, Kaijun Wang

Maintainer: Kaijun Wang <kaijunwang.19@gmail.com>
References

Examples

```r
data(funnel)
X<-funnel$x
z<-funnel$z
z.laser.x30<-LASER(X,z,X.target=30,m=c(4,8))$data
hist(z.laser.x30,50)
```

rEB.Finite.Bayes

Relevance-Integrated Finite Bayes.

Description

Performs custom-tailored Finite Bayes inference via LASERs.

Usage

```r
rEB.Finite.Bayes(X,z,X.target,z.target,m=c(4,6),m.EB=8, B=10, centering=TRUE,
nsample=min(1000,length(z)), g.method="Var", LP.type="Var",
sd0=NULL,
theta.set.prior=seq(-2.5*sd(z),2.5*sd(z),length.out=500),
theta.set.post=seq(z.target-2.5*sd(z),z.target+2.5*sd(z),length.out=500),
post.alpha=0.8, plot=TRUE, ...)```

Arguments

- **X**: A \(n\)-by-\(d\) matrix of covariate values
- **z**: A length \(n\) vector containing observations of target random variable.
- **X.target**: A length \(d\) vector providing the set of covariates for the target case.
- **z.target**: the target \(z\) to investigate
- **m**: An ordered pair. First number indicates how many LP-nonparametric basis to construct for each \(X\), second number indicates how many to construct for \(z\).
- **m.EB**: The truncation point reflecting the concentration of true nonparametric prior density \(\pi\) around known prior distribution \(g\)
- **B**: Number of bags of bootstrap samples for Finite Bayes.
- **centering**: Whether to perform regression-adjustment to center the data, default is TRUE.
- **nsample**: Number of relevance samples generated for the target case.
- **g.method**: Suggested method for finding parameter estimates \(\hat{\mu}\) and \(\hat{\tau^2}\) for normal prior: "DL" uses Dersimonian and Lard technique; "SJ" uses Sidik-Jonkman; "REML" uses restricted maximum likelihood; and "MoM" uses a method of moments technique.
User selects either "L2" for LP-orthogonal series representation of relevance density function \( d \) or "MaxEnt" for the maximum entropy representation. Default is L2.

Fixed standard deviation for \( z|\theta \). Default is NULL, the standard error will be calculated from data.

This indicates the set of grid points to compute prior density.

This indicates the set of grid points to compute posterior density.

The alpha level for posterior HPD interval.

Whether to display plots for prior and posterior of Relevance Finite Bayes.

Extra parameters to pass to LASER function.

A list containing the following items:

Relevant Finite Bayes prior results.

Prior density curve estimation.

Relevant empirical Bayes posterior results.

Posterior density curve estimation.

Posterior mode for \( \pi(\theta|z, x) \).

Posterior mean for \( \pi(\theta|z, x) \).

Standard error for the posterior mean.

The HPD interval for posterior \( \pi(\theta|z, x) \).

Parameters for \( g = N(\mu, \tau^2) \).

Reports the LP-coefficients of the relevance function \( d_z(x) \).

Initial estimate for null standard errors.

The plots for prior and posterior density.

Subhadeep Mukhopadhyay, Kaijun Wang

Maintainer: Kaijun Wang <kaijunwang.19@gmail.com>

Examples

```r
data(funnel)
X<-funnel$x
z<-funnel$z
X.target=30
z.target=4.49
rFB.out=rEB.Finite.Bayes(X,z,X.target,z.target,B=5,nsample=1000,m=c(4,8),m.EB=8,
theta.set.prior=seq(-4,4,length.out=500),
theta.set.post=seq(0,5,length.out=500),cred.interval=0.8,parallel=FALSE)
rFB.out$plots$prior
rFB.out$plots$post
```

---

**rEB.proc**  
**Relevance-Integrated Empirical Bayes Inference**

### Description

Performs custom-tailored empirical Bayes inference via LASERs.

### Usage

```r
rEB.proc(X, z, X.target, z.target, m = c(4, 6), nbag = NULL, centering = TRUE,
lp.reg.method = "lm", coef.smooth = "BIC", nsample = min(length(z),2000),
theta.set.prior = NULL, theta.set.post = NULL, LP.type = "L2",
g.method = "DL", sd0 = NULL, m.EB = 8, parallel = FALSE,
avg.method = "mean", post.curve = "HPD", post.alpha = 0.8,
color = "red", ...)
```

### Arguments

- **X**: A $n$-by-$d$ matrix of covariate values
- **z**: A length $n$ vector containing observations of target random variable.
- **X.target**: A length $d$ vector providing the set of covariates for the target case.
- **z.target**: The target $z$ to investigate
- **m**: An ordered pair. First number indicates how many LP-nonparametric basis to construct for each $X$, second number indicates how many to construct for $z$.
- **nbag**: Number of bags of parametric bootstrapped samples to use, set to NULL to disable.
- **centering**: Whether to perform regression-adjustment to center the data, default is TRUE.
- **lp.reg.method**: Method for estimating the relevance function and its conditional LP-Fourier coefficients. We currently support three options: lm (inbuilt with subset selection), glmnet, and knn.
coef.smooth Specifies the method to use for LP coefficient smoothing (AIC or BIC). Uses BIC by default.
nsample Number of relevance samples generated for the target case.
theta.set.prior This indicates the set of grid points to compute prior density.
theta.set.post This indicates the set of grid points to compute posterior density.
LP.type User selects either "L2" for LP-orthogonal series representation of relevance density function \( d \) or "MaxEnt" for the maximum entropy representation. Default is L2.
g.method Suggested method for finding parameter estimates \( \hat{\mu} \) and \( \hat{\tau}^2 \) for normal prior: "DL" uses Dersimonian and Lard technique; "SJ" uses Sidik-Jonkman; 'REML' uses restricted maximum likelihood; and "MoM" uses a method of moments technique.
sd0 Fixed standard deviation for \( z|\theta \). Default is NULL, the standard error will be calculated from data.
m.EB The truncation point reflecting the concentration of true nonparametric prior density \( \pi \) around known prior distribution \( g \)
parallel Use parallel computing for obtaining the relevance samples, mainly used for very huge nsample, default if FALSE.
avg.method For parametric bootstrapping, this specifies how the results from different bags are aggregated. ("mean" or "median").
post.curve For plotting, this specifies what to show on posterior curve. "HPD" provides HPD interval, "band" gives confidence band.
post.alpha Confidence level to use when plotting posterior confidence band, or the alpha level for HPD interval.
color The color of the plots.
... Extra parameters to pass to other functions. Currently only supports the arguments for knn().

Value
A list containing the following items:

result Contains relevant empirical Bayes prior and posterior results.
sd0 Initial estimate for null standard errors.
prior Relevant empirical Bayes prior results.
$g.par Parameters for \( g = N(\mu, \tau^2) \).
$g.method Method used for finding the parameter estimates \( \hat{\mu} \) and \( \hat{\tau}^2 \) for \( g \).
$LP.coef Reports the LP-coefficients of the relevance function \( d_x(x) \).
posterior Relevant empirical Bayes posterior results.
$post.mode Posterior mode for \( \pi(\theta|z, x) \).
$post.mean$ Posterior mean for $\pi(\theta|z, x)$.

$post.mean.sd$ Standard error for the posterior mean, when using parametric bootstrap.

$HPD.interval$ The HPD interval for posterior $\pi(\theta|z, x)$.

$post.alpha$ same as input $post.alpha$.

plots The plots for prior and posterior density.

Author(s)

Subhadeep Mukhopadhyay, Kaijun Wang

Maintainer: Kaijun Wang <kaijunwang.19@gmail.com>

References


Examples

data(funnel)
X<-funnel$x
z<-funnel$z
X.target=60
z.target=4.49
rEB.out<-rEB.proc(X,z,X.target,z.target,m=c(4,8),
                    theta.set.prior=seq(-2,2,length.out=200),
                    theta.set.post=seq(-2,5,length.out=200),
                    centering=TRUE,m.EB=6,nsample=1000)
rEB.out$plots$rEB.post
rEB.out$plots$rEB.prior
Index

* **Main Functions**
  - g2l.proc, 3
  - LASER, 7
  - rEB.Finite.Bayes, 8
  - rEB.proc, 10

* **datasets**
  - data.dti, 2
  - funnel, 3
  - kidney, 6

* **package**
  - LPRelevance-package, 2

  data.dti, 2
  eLP.poly (LPRelevance-package), 2
  eLP.univar (LPRelevance-package), 2
  fdr.thresh (g2l.proc), 3
  funnel, 3
  g2l.infer (g2l.proc), 3
  g2l.proc, 3
  g2l.sampler (LASER), 7
  get_bh_threshold (g2l.proc), 3
  getNullProb (g2l.proc), 3
  kidney, 6

  LASER, 7
  LASER.rEB (rEB.proc), 10
  LP.post.conv (rEB.proc), 10
  LP.smooth (LPRelevance-package), 2
  LPcdn (LPRelevance-package), 2
  LPRegression (LPRelevance-package), 2
  LPRelevance (LPRelevance-package), 2
  LPRelevance-package, 2
  Predict.LP.poly (LPRelevance-package), 2
  rEB.Finite.Bayes, 8
  rEB.proc, 10
  z.lp.center (LASER), 7