Package ‘LUCIDus’

July 22, 2020

TypePackage
TitleLatent Unknown Clustering with Integrated Data
Version2.1.0
AuthorYinqi Zhao, David V. Conti, Cheng Peng, Zhao Yang
MaintainerYinqi Zhao <yinqiz@usc.edu>
DescriptionAn implementation for the ‘LUCID’ model (Peng (2019) <doi:10.1093/bioinformatics/btz667>) to jointly estimate latent unknown clusters/subgroups with integrated data. An EM algorithm is used to obtain the latent cluster assignment and model parameter estimates. Feature selection is achieved by applying the L1 regularization method.
DependsR (>= 3.6.0)
LicenseGPL-3
EncodingUTF-8
LazyDatatrue
RoxygenNote7.1.1
URLhttps://github.com/Yinqi93/LUCIDus
Suggests knitr, rmarkdown
VignetteBuilderknitr
Imports mclust, nnet, networkD3, parallel, boot, lbfgs, glasso, glmnet
NeedsCompilationno
RepositoryCRAN
Date/Publication2020-07-22 08:00:03 UTC

R topics documented:

 boot.lucid .. 2
def.control ... 3
def.tune ... 4
est.lucid ... 5
plot.lucid ... 6
boots.licid

predict.licid ... 7
print.licid ... 8
print.sumlicid .. 9
sim1 ... 9
sim2 ... 10
summary.licid .. 10
tune.licid ... 11

Index 13

boot.licid Bootstrap method of inference for LUCID

Description

This function provides SEs of parameter estimates from a LUCID model through bootstrap method.

Usage

boot.licid(G, Z, Y, CoG = NULL, CoY = NULL, model, R = 100, n = detectCores())

Arguments

G Genetic features/environmental exposures, a matrix.
Z Biomarkers/other omics data, a matrix.
Y Disease outcome, it is suggested to transform it into a n by 1 matrix.
CoG Optional, matrix. Covariates to be adjusted for estimating the latent cluster.
CoY Optional, matrix. Covariates to be adjusted for estimating the outcome.
model A LUCID model fitted by est.licid.
R Number of bootstrap iterations.
n Number of CPU cores to be used in the bootstrap

Value

A list of estimates with their 95 percent CI.

Author(s)

Yinqi Zhao, Cheng Peng, Zhao Yang, David V. Conti

References

Examples

```r
## Not run:
fit1 <- est.lucid(G = sim2[, 1:10], Z = sim2[, 11:20], Y = as.matrix(sim2[, 21]),
K = 2, family = "binary")
chk <- Sys.getenv("_R_CHECK_LIMIT_CORES_", "")
if (nzchar(chk) && chk == "TRUE") {
  # use 2 cores in CRAN/Travis/AppVeyor
  num_workers <- 2L
} else {
  num_workers <- parallel::detectCores()
}
boot1 <- boot.lucid(G = sim2[, 1:10], Z = sim2[, 11:20], Y = as.matrix(sim2[, 21]),
model = fit1, R = 100, n = num_workers)
## End(Not run)
```

def.control

Control parameters for EM algorithm

Description

Control parameters for EM algorithm

Usage

```r
def.control(tol = 0.001, max_itr = 1000, max_tot.itr = 10000)
```

Arguments

- `tol`: Convergence criteria for the EM algorithm. Default is 0.001.
- `max_itr`: Maximum number of iterations in each try of fitting process, integer, default is 1000.
- `max_tot.itr`: Maximum number of total iterations, integer, default is 10000.

Value

A list of tolerance settings for LUCID.

Author(s)

Yinqi Zhao, Cheng Peng, Zhao Yang, David V. Conti
def.tune

Define tuning parameters of regularization for LUCID model.

Description

Define tuning parameters of regularization for LUCID model.

Usage

def.tune(
 Rho_G = 0,
 Rho_Z_InvCov = 0,
 Rho_Z_CovMu = 0,
 Select_G = FALSE,
 Select_Z = FALSE
)

Arguments

Rho_Z_InvCov Numeric. Penalty for the inverse of the covariance of biomarkers, which will produce a sparse matrix.
Rho_Z_CovMu Numeric. Penalty for the product of the inverse of the covariance of biomarkers, which will produce a sparse matrix for the mean.
Select_G Flag for variable selection in genetic features/environmental exposures. Default is FALSE.
Select_Z Flag for variable selection in biomarkers. Default is FALSE.

Value

A list of tuning parameters and settings will be returned for integrative clustering.

Author(s)

Yinqi Zhao, Cheng Peng, Zhao Yang, David V. Conti
est.lucid

Estimate latent unknown clusters with multi-omics data

Description

This function estimates the latent clusters by integrating genetic features/environmental exposures, biomarkers with/without the outcome of interest. Variable selection is available for analyzing the high-dimensional data.

Usage

```r
est.lucid(
  G,
  Z,
  Y,
  CoG = NULL,
  CoY = NULL,
  K = 2,
  family = "normal",
  useY = TRUE,
  control = def.control(),
  tune = def.tune(),
  Z.var.str = NULL
)
```

Arguments

- `G`: Genetic features/environmental exposures, a matrix.
- `Z`: Biomarkers/other omics data, a matrix.
- `Y`: Disease outcome, it is suggested to transform it into a n by 1 matrix.
- `CoG`: Optional, matrix. Covariates to be adjusted for estimating the latent cluster.
- `CoY`: Optional, matrix. Covariates to be adjusted for estimating the outcome.
- `K`: Number of latent clusters.
- `family`: Type of outcome Y. It should be choose from "normal", "binary".
- `useY`: Whether or not to include the information of Y to estimate the latent clusters. Default is TRUE.
- `control`: A list of tolerance parameters used by EM algorithm. See `def.control`.
- `tune`: A list of tuning parameters used by variable selection procedure. See `def.tune`.
- `Z.var.str`: The variance-covariance structure for the biomarkers. See `mclustModelNames` for details.
Value

A list which contains the several features of LUCID, including:

pars
Estimates of parameters of LUCID, including beta (estimates of genetic feature/environmental exposure), mu (estimates of cluster-specific biomarker means), sigma (estimates of the cluster-specific biomarker variance-covariance matrix) and gamma (estimates of cluster-specific effect and covariates effect related to the outcome)

K
Number of latent cluster

Z.var.str
The model used to estimate the cluster-specific variance-covariance matrix, for further details, see mclust

likelihood
The log likelihood of the LUCID model

post.p
Predicted probability of belonging to each latent cluster

Author(s)

Yinqi Zhao, Cheng Peng, Zhao Yang, David V. Conti

References

Examples

```r
## Not run:
set.seed(10)
fit1 <- est.lucid(G = sim1[, 1:10], Z = sim1[, 11:20], Y = as.matrix(sim1[, 21]), K = 2, family = "binary")
fit2 <- est.lucid(G = sim1[, 1:10], Z = sim1[, 11:20], Y = as.matrix(sim1[, 21]), K = 2, family = "binary",
                 tune = def.tune(Select_Z = TRUE, Rho_Z_InvCov = 0.1, Rho_Z_CovMu = 0.02),
                 Select_G = TRUE, Rho_G = 0.02))
## End(Not run)
```

plot.lucid

Visualize the LUCID model through a Sankey diagram This function generates a Sankey diagram for the results of integrative clustering based on an lucid object

Description

Visualize the LUCID model through a Sankey diagram This function generates a Sankey diagram for the results of integrative clustering based on an lucid object
predict.lucid

Usage

```r
## S3 method for class 'lucid'
plot(x, ...)
```

Arguments

- `x` A model fitted by `est.lucid`
- `...` Other parameters to be passed to `plot`

Value

A DAG graph created by `sankeyNetwork`

Author(s)

Cheng Peng, Zhao Yang, David V. Conti

References

Examples

```r
## Not run:
fit1 <- est.lucid(G = G1, Z = Z1, Y = Y1, CoY = CovY, K = 2, family = "binary")
plot(fit1)

## End(Not run)
```

predict.lucid

`Predict the outcome based on a fitted LUCID model`

Description

Predict the outcome based on a fitted LUCID model

Usage

```r
## S3 method for class 'lucid'
predict(object, newG, newZ, newCoG = NULL, newCoY = NULL, response = TRUE, ...)
```
Arguments

- **object**: A model fitted and returned by `est.lucid`
- **newG**: A new data set of genetic/environmental factors
- **newZ**: A new data set of biomarkers
- **newCoG**: Optional. A new data set of covariates included in the G->X analysis
- **newCoY**: Optional. A new data set of covariates included in the X->Y analysis
- **response**: Report the posterior distribution of cluster assignment (and the probability of binary outcome), default is TRUE
- **...**: Other parameters to be passed to `predict`

Value

A list contains predicted latent cluster and outcome for each observation

Examples

```r
## Not run:
index <- sample(1:2000, 200)
fit <- est.lucid(G = sim1[-index, 1:10], Z = sim1[-index, 11:20], Y = as.matrix(sim1[-index, 21]))
pred <- predict(object = fit, newG = sim1[index, 1:10], newZ = sim1[index, 11:20])
## End(Not run)
```

print.lucid

Print the output of `est.lucid`

Description

Print the output of `est.lucid`

Usage

```r
## S3 method for class 'lucid'
print(x, ...)
```

Arguments

- **x**: An object of LUCID model, returned by `est.lucid`
- **...**: Other arguments to be passed to `print`
Print the output of LUCID in a nicer table

Description

Print the output of LUCID in a nicer table

Usage

```r
# S3 method for class 'sumlucid'
print(x, ...)
```

Arguments

- **x** An object returned by `summary.lucid`
- **...** Other parameters to be passed to `print`

siml

simulated dataset 1

Description

A simulated dataset for integrated clustering with normal outcome. The data is simulated under cluster number K = 2.

Usage

```r
siml
```

Format

A matrix of 22 columns, which are

- **G1 - G10** Genetic features, G1 to G5 are causal genes contributed to clustering, with OR = 2; G6 to G10 are null genes that is not related to clustering
- **Z1 - Z10** Biomarkers, Z1 to Z5 are causal biomarkers with delta Z = 4 between 2 clusters, Z6 to Z10 are noises with delta Z = 0. All biomarkers are assumed to be independent with each other
- **Y** Outcome of interest, which follows 2 normal distribution with N(-1, 1) and N(1, 1)
- **X** Latent cluster assignment for each observation
sim2

simulated dataset 2

Description

A simulated dataset for integrated clustering with binary outcome. The data is simulated under cluster number $K = 2$.

Usage

`sim2`

Format

A matrix of 22 columns, which are

- **G1 - G10** Genetic features, G1 to G5 are causal genes contributed to clustering, with OR = 2; G6 to G10 are null genes that is not related to clustering.
- **Z1 - Z10** Biomarkers, Z1 to Z5 are causal biomarkers with delta $Z = 4$ between 2 clusters, Z6 to Z10 are noises with delta $Z = 0$. All biomarkers are assumed to be independent with each other.
- **Y** Outcome of interest, the odds ratio of the cluster is 2.
- **X** Latent cluster assignment for each observation.

summary.lucid

Summarize the results of LUCID model

Description

Summarize the results of LUCID model.

Usage

```r
## S3 method for class 'lucid'
summary(object, boot.se = NULL, ...)
```

Arguments

- **object**
 A model fitted by `est.lucid`
- **boot.se**
 A object returned by `boot.lucid`, which contains the bootstrap standard error
- **...**
 Other parameters to be passed to `summary`
Value

A list with class "sumlucid", which contains the following object

Beta
Estimates of genetic/environmental effects (and effect of covariates if included), matrix

Mu
Estimates of cluster-specific biomarker means, matrix

Gamma
Estimates of cluster-specific disease risk (and effect of covariates if included), vector

Family
Type of Y, binary or normal

K
Number of latent clusters

loglik
log likelihood of the model

BIC
Bayesian Information Criteria of the model

boot.se
Bootstrap SE for estimates, an object returned by boot.lucid

Author(s)

Yinqi Zhao, Cheng Peng, Zhao Yang, David V. Conti

References

Examples

```r
## Not run:
fit1 <- est.lucid(G = G1, Z = Z1, Y = Y1, CoY = CovY, K = 2, family = "binary", useY = FALSE)
summary(fit1)
fit2 <- est.lucid(G = G1, Z = Z1, Y = Y1, CoY = CovY, K = 2, family = "binary", useY = FALSE,
tune = def.tune(Select_Z = TRUE, Rho_Z_InvCov = 0.1, Rho_Z_CovMu = 90,
Select_G = TRUE, Rho_G = 0.02))
summary(fit2)
## End(Not run)
```

tune.lucid

Description

Grid search for tuning parameters to fit the LUCID model
Usage

\texttt{tune.lucid(}
\begin{description}
\item G, \texttt{Genetic features/environmental exposures, a \texttt{matrix}.}
\item Z, \texttt{Biomarkers/other omics data, a \texttt{matrix}.}
\item Y, \texttt{Disease outcome, it is suggested to transform it into a n by 1 \texttt{matrix}.}
\item CoG = NULL, \texttt{Optional, matrix. Covariates to be adjusted for estimating the latent cluster.}
\item CoY = NULL, \texttt{Optional, matrix. Covariates to be adjusted for estimating the outcome.}
\item family = "normal", \texttt{Type of outcome Y. It should be choose from "normal", "binary".}
\item useY = TRUE, \texttt{Whether or not to include the information of Y to estimate the latent clusters. Default is TRUE.}
\item K = 2:6, \texttt{Numeric sequence. Number of latent clusters.}
\item Rho_G = NULL, \texttt{Numeric sequence, Lasso type penalty for selection of G.}
\item Rho_Z_InvCov = NULL, \texttt{Numeric sequence, Lasso type penalty for the inverse covariance structure of Z.}
\item Rho_Z_CovMu = NULL, \texttt{Numeric sequence, Lasso type penalty for the product of covariance matrix and mean of Z.}
\end{description}
\texttt{)}

Arguments

G \hspace{1cm} \texttt{Genetic features/environmental exposures, a \texttt{matrix}.}
Z \hspace{1cm} \texttt{Biomarkers/other omics data, a \texttt{matrix}.}
Y \hspace{1cm} \texttt{Disease outcome, it is suggested to transform it into a n by 1 \texttt{matrix}.}
CoG \hspace{1cm} \texttt{Optional, matrix. Covariates to be adjusted for estimating the latent cluster.}
CoY \hspace{1cm} \texttt{Optional, matrix. Covariates to be adjusted for estimating the outcome.}
family \hspace{1cm} \texttt{Type of outcome Y. It should be choose from "normal", "binary".}
useY \hspace{1cm} \texttt{Whether or not to include the information of Y to estimate the latent clusters. Default is TRUE.}
K \hspace{1cm} \texttt{Numeric sequence. Number of latent clusters.}
Rho_G \hspace{1cm} \texttt{Numeric sequence, Lasso type penalty for selection of G.}
Rho_Z_InvCov \hspace{1cm} \texttt{Numeric sequence, Lasso type penalty for the inverse covariance structure of Z.}
Rho_Z_CovMu \hspace{1cm} \texttt{Numeric sequence, Lasso type penalty for the product of covariance matrix and mean of Z.}

Value

A list. Containing model BICs of different combination of tuning parameters.

Examples

```r
## Not run:
tuenpar <- tune.lucid(G = G1, Z = Z1, Y = Y1, family = "binary",
Rho_G = seq(0.01, 0.02, by = 0.005),
Rho_Z_InvCov = seq(0.1, 0.3, by = 0.1),
Rho_Z_CovMu = seq(80, 100, by = 10))
```

End(Not run)
Index

* datasets
 sim1, 9
 sim2, 10

boot.lucid, 2, 10, 11

def.control, 3, 5
def.tune, 4, 5

est.lucid, 2, 5, 7, 8, 10

matrix, 2, 5, 12
mclust, 6
mclustModelNames, 5

plot.lucid, 6
predict.lucid, 7
print.lucid, 8
print.sumlucid, 9

sankeyNetwork, 7
sim1, 9
sim2, 10
summary.lucid, 10

tune.lucid, 11