Package ‘MSbox’

December 8, 2022

Type Package
Title Mass Spectrometry Tools
Version 1.4.8
Author Yonghui Dong
Maintainer Yonghui Dong <yonghui.dong@gmail.com>
Description Common mass spectrometry tools described in John Roboz (2013) <doi:10.1201/b15436>. It allows checking element isotopes, calculating (isotope labelled) exact monoisotopic mass, m/z values and mass accuracy, and inspecting possible contaminant mass peaks, examining possible adducts in electrospray ionization (ESI) and matrix-assisted laser desorption ionization (MALDI) ion sources.
Depends R (>= 3.5.0)
Imports stringr, crayon, xml2, stats
License GPL-2
URL https://github.com/YonghuiDong/MSbox
BugReports https://github.com/YonghuiDong/MSbox/issues/new
Encoding UTF-8
RoxygenNote 7.2.2
NeedsCompilation no
Repository CRAN
Date/Publication 2022-12-08 14:42:31 UTC

R topics documented:

 adduct ... 2
 contam .. 3
 describe .. 3
 doStat ... 4
 E_iso ... 5
adduct

Description

calculate common adduct ions in positive or negative ion mode

Usage

adduct(F, mode = c("+", "+"))

Arguments

F

chemical formula, case insensitive

mode

ionization mode, either positive '+ ' or negative '-'

Author(s)

Yonghui Dong

Examples

adduct("C1H4", mode = "+")
adduct("C1h4", mode = "+")
contam

Contaminants in MS

Description
check the possible contaminants

Usage
```r
contam(mz, mode = NULL, ppm = 10)
```

Arguments
- **mz**: suspected m/z value
- **mode**: ionization mode, either positive '+' or negative '-'
- **ppm**: mass tolerance, default value = 10

Author(s)
Yonghui Dong

Examples
```r
contam(33.0335, ppm = 10, mode = "+")
contam(44.998, ppm = 10, mode = "-")
```

describe

Get the compound information

Description
get compound formula and structure from https://cactus.nci.nih.gov/chemical/structure

Usage
```r
describe(chem, representation = "formula", info = FALSE)
```

Arguments
- **chem**: chemical name of the compound
- **representation**: representation methods, formula is default
- **info**: extra molecular information that users can query
doStat

Author(s)
Yonghui Dong

Examples

```r
## Not run:
describe('malic acid', "formula")
describe(c('malic acid', 'citric acid', 'tartaric acid'), "smiles")

## End(Not run)
```

doStat

Performing statistics

Description
performing statistics, including calculating fold change, p-values and VIP values

Usage
```
doStat(x, Group = NULL)
```

Arguments

- **x**: sample ion intensity matrix, row sample, column feature.
- **Group**: sample group information

Value

a dataframe with statistical information

Examples
```
dat <- matrix(runif(2*300), ncol = 2, nrow = 300)
rownames(dat) <- 1:dim(dat)[1]
myGroup <- rep_len(LETTERS[1:3], 300)
ret <- doStat(dat, Group = myGroup)
```
E_iso
Element isotopes

Description

check element isotope information

Usage

E_iso(S)

Arguments

S element, can be element symbol (i.e. C) or full name (i.e. Carbon). Both Element symbol and full name are case insensitive.

Author(s)

Yonghui Dong

Examples

E_iso('Na') # element symbol
E_iso('nA') # element symbol, case insensitive
E_iso('Carbon') # element full name
E_iso('carbon') # element full name, case insensitive

getCV
Calculate coefficient of variation (CV)

Description

Calculate coefficient of variation (CV), also known as relative standard deviation (RSD) among different sample groups

Usage

getCV(x, Group = NULL)

Arguments

x sample ion intensity matrix, row sample, column feature.
Group sample group information

Value

a dataframe with mean values and cv
Examples

dat <- matrix(runif(2*300), ncol = 2, nrow = 300)
myGroup <- rep_len(LETTERS[1:2], 300)
ret <- getCV(dat, Group = myGroup)

getFC

calculate fold change

Description

calculate fold change among different samples.

Usage

getFC(x, Group = NULL)

Arguments

x sample ion intensity matrix, row sample, column feature.
Group sample group information

Value

a dataframe with mean values and fold changes

Examples

dat <- matrix(runif(2*300), ncol = 2, nrow = 300)
myGroup <- rep_len(LETTERS[1:2], 300)
ret <- getFC(dat, Group = myGroup)

getMax

Get the sample name which has the max ion intensity

Description

get the sample name which has the max ion intensity

Usage

getMax(x)

Arguments

x sample ion intensity matrix, row sample, column feature.
getP

Value

a data frame

Examples

dat <- cbind.data.frame(mz = c(100, 101, 300), mz2 = c(0, 0, 1), mz3 = c(1, 9, 1))
rownames(dat) <- c("A", "B", "C")
out <- getMax(dat)

dat <- matrix(runif(2*300), ncol = 2, nrow = 300)
myGroup <- rep_len(LETTERS[1:3], 300)
out <- getP(dat, Group = myGroup)
Iso_mass

Isotope labelled molecular mass

Description

Calculate isotope labelled molecular mass

Usage

Iso_mass(F, iso)

Arguments

F, chemical formula, case insensitive
iso, labelled elements, case insensitive

Author(s)

Yonghui Dong

Examples

Iso_mass(F = 'VarC7H6O4', iso = '[:13]C2[:2]H3') # Two 13C and three 2H are labeled

Iso_mz

Isotope labelled molecular mass

Description

Calculate isotope labelled m/z

Usage

Iso_mz(F, iso, z)

Arguments

F, chemical formula, case insensitive
iso, labelled elements, case insensitive
z charge

Author(s)

Yonghui Dong

Examples

Iso_mz(F = 'C7H6O4', iso = '[:13]C2[:2]H3', z = -1) # Two 13C and three 2H are labeled
mass

molecular mass

Description

calculate accurate molecular mass

Usage

mass(F, caseSensitive = FALSE)

Arguments

- F: chemical formula, case insensitive
- caseSensitive: if case sensitive is 'FALSE' (default), the elements are separated by numbers. For instance, Carbon dioxide can be written as 'c1o2' or any combination of the two elements in lower or upper cases. However, the number of elements should be clearly stated in the chemical formula. if case sensitive is 'TRUE', the elements are separated by upper case letters. For instance, Carbon dioxide must be written as 'C1O2' or 'CO2'. You don’t need to write the number of the element if it is 1.

Author(s)

Yonghui Dong

Examples

mass('C7h7o1')
mass('C7H70', caseSensitive = TRUE)
mass(c('C7H704', 'C'), caseSensitive = TRUE) # vector input
mass(c('C7h704', 'C1'))

mz

Calculate accurate mass-to-charge ratio

Description

Calculate accurate mass-to-charge ratio (m/z)

Usage

mz(m, z, caseSensitive = FALSE)
Arguments

- **m**: chemical formula of an ion, case insensitive
- **z**: charge
- **caseSensitive**: if case sensitive is ‘FALSE’ (default), the elements are separated by numbers. For instance, Carbon dioxide can be written as 'c1o2' or any combination of the two elements in lower or upper cases. However, the number of elements should be clearly stated in the chemical formula. If case sensitive is ‘TRUE’, the elements are separated by upper case letters. For instance, Carbon dioxide must be written as ‘C1O2’ or ‘CO2’. You don’t need to write the number of the element if it is 1.

Author(s)

Yonghui Dong

Examples

```
mz('C7H7O', z = 1)
mz('C7H7O', z = 1, caseSensitive = TRUE)
mz(c('C7H7O4', 'C'), z = -1, caseSensitive = TRUE) # vector input
mz(c('c7h7o4', 'c1'), z = -1)
```
searchDB

Search in customized database

Description

search in customized database based on accurate m/z and RT

Usage

```r
searchDB(DF, DB, ppm = 5, RT = 0.2, useRT = FALSE)
```

Arguments

- **DF**: input file, should contain at least a column named mz
- **DB**: database, should contain at least a column named mz
- **ppm**: mass tolerance, default 5ppm
- **RT**: retention time tolerance, default 0.2min
- **useRT**: should RT be considered during database search?

Author(s)

Yonghui Dong

Examples

```r
DF <- cbind.data.frame(mz = c(100.001, 100.1), RT = c(10, 11))
DB <- cbind.data.frame(mz = c(100.001, 100.1), RT = c(10, 12.1))
searchDB(DF, DB, ppm = 5, RT = 0.2, useRT = TRUE)
```

what

search for m/z in from the idiom metabolomics database

Description

tentative metabolite identification based on m/z value search

Usage

```r
what(myMZ, mode = NULL, ppm = 5, useDB = "HMDB")
```

Arguments

- **myMZ**: m/z values
- **mode**: ionization mode, either positive ‘+’ or negative ‘-’
- **ppm**: mass tolerance, default value = 10
- **useDB**: which database to use, HMDB or KEGG? default is HMDB
Author(s)
Yonghui Dong

Examples
a = what(133.014, mode = '-', ppm = 10)
Index

adduct, 2
contam, 3
describe, 3
doStat, 4
E_iso, 5
getCV, 5
getFC, 6
getMax, 6
getP, 7
Iso_mass, 8
Iso_mz, 8
mass, 9
mz, 9
ppm, 10
searchDB, 11
what, 11