
Package ‘MachineShop’
March 2, 2021

Type Package

Title Machine Learning Models and Tools

Version 2.7.0

Date 2021-03-02

Author Brian J Smith [aut, cre]

Maintainer Brian J Smith <brian-j-smith@uiowa.edu>

Description Meta-package for statistical and machine learning with a unified
interface for model fitting, prediction, performance assessment, and
presentation of results. Approaches for model fitting and prediction of
numerical, categorical, or censored time-to-event outcomes include
traditional regression models, regularization methods, tree-based methods,
support vector machines, neural networks, ensembles, data preprocessing,
filtering, and model tuning and selection. Performance metrics are provided
for model assessment and can be estimated with independent test sets, split
sampling, cross-validation, or bootstrap resampling. Resample estimation
can be executed in parallel for faster processing and nested in cases of
model tuning and selection. Modeling results can be summarized with
descriptive statistics; calibration curves; variable importance; partial
dependence plots; confusion matrices; and ROC, lift, and other performance
curves.

Depends R (>= 3.6.0)

Imports abind, dials (>= 0.0.4), foreach, ggplot2 (>= 3.3.0), kernlab,
magrittr, Matrix, methods, nnet, party, polspline, progress,
recipes (>= 0.1.4), rlang, rsample, Rsolnp, survival, tibble,
utils

Suggests adabag, BART, bartMachine, C50, cluster, doParallel, e1071,
earth, elasticnet, gbm, glmnet, gridExtra, Hmisc, kableExtra,
kknn, knitr, lars, MASS, mboost, mda, partykit, pls,
randomForest, randomForestSRC, ranger, rmarkdown, rms, rpart,
testthat, tree, xgboost

LazyData true

License GPL-3

1

2 R topics documented:

URL https://brian-j-smith.github.io/MachineShop/

BugReports https://github.com/brian-j-smith/MachineShop/issues

RoxygenNote 7.1.1

VignetteBuilder knitr

Encoding UTF-8

Collate 'classes.R' 'MLControl.R' 'MLMetric.R' 'MLModel.R'
'ML_AdaBagModel.R' 'ML_AdaBoostModel.R' 'ML_BARTMachineModel.R'
'ML_BARTModel.R' 'ML_BlackBoostModel.R' 'ML_C50Model.R'
'ML_CForestModel.R' 'ML_CoxModel.R' 'ML_EarthModel.R'
'ML_FDAModel.R' 'ML_GAMBoostModel.R' 'ML_GBMModel.R'
'ML_GLMBoostModel.R' 'ML_GLMModel.R' 'ML_GLMNetModel.R'
'ML_KNNModel.R' 'ML_LARSModel.R' 'ML_LDAModel.R' 'ML_LMModel.R'
'ML_MDAModel.R' 'ML_NNetModel.R' 'ML_NaiveBayesModel.R'
'ML_NullModel.R' 'ML_PLSModel.R' 'ML_POLRModel.R'
'ML_QDAModel.R' 'ML_RFSRCModel.R' 'ML_RPartModel.R'
'ML_RandomForestModel.R' 'ML_RangerModel.R' 'ML_SVMModel.R'
'ML_StackedModel.R' 'ML_SuperModel.R' 'ML_SurvRegModel.R'
'ML_TreeModel.R' 'ML_XGBModel.R' 'MachineShop-package.R'
'ModelFrame.R' 'ModelRecipe.R' 'ModeledInput.R'
'TrainedInputs.R' 'TrainedModels.R' 'append.R' 'calibration.R'
'coerce.R' 'combine.R' 'confusion.R' 'convert.R' 'data.R'
'dependence.R' 'diff.R' 'expand.R' 'extract.R' 'fit.R' 'grid.R'
'metricinfo.R' 'metrics.R' 'metrics_factor.R'
'metrics_numeric.R' 'modelinfo.R' 'models.R' 'performance.R'
'performance_curve.R' 'plot.R' 'predict.R' 'predictors.R'
'print.R' 'recipe_roles.R' 'resample.R' 'response.R'
'settings.R' 'step_kmeans.R' 'step_kmedoids.R' 'step_lincomp.R'
'step_sbf.R' 'step_spca.R' 'summary.R' 'survival.R' 'utils.R'
'varimp.R'

NeedsCompilation no

Repository CRAN

Date/Publication 2021-03-02 19:10:12 UTC

R topics documented:
MachineShop-package . 4
. 6
AdaBagModel . 7
AdaBoostModel . 8
as.MLModel . 10
BARTMachineModel . 10
BARTModel . 12
BlackBoostModel . 14
C50Model . 16
calibration . 17

https://brian-j-smith.github.io/MachineShop/
https://github.com/brian-j-smith/MachineShop/issues

R topics documented: 3

CForestModel . 18
combine . 20
confusion . 21
CoxModel . 22
dependence . 23
diff . 24
DiscreteVariate . 25
EarthModel . 26
expand_model . 27
expand_params . 28
expand_steps . 29
extract . 30
FDAModel . 31
fit . 33
GAMBoostModel . 34
GBMModel . 35
get_grid . 37
GLMBoostModel . 38
GLMModel . 40
GLMNetModel . 41
Grid . 43
ICHomes . 44
inputs . 44
KNNModel . 45
LARSModel . 46
LDAModel . 48
lift . 49
LMModel . 50
MDAModel . 50
metricinfo . 52
metrics . 53
MLControl . 56
MLMetric . 58
MLModel . 59
ModeledInput . 62
ModelFrame . 63
modelinfo . 64
models . 65
NaiveBayesModel . 67
NNetModel . 68
ParameterGrid . 69
performance . 70
performance_curve . 72
plot . 74
PLSModel . 76
POLRModel . 77
predict . 78
print . 79

4 MachineShop-package

QDAModel . 80
RandomForestModel . 81
RangerModel . 83
recipe_roles . 84
resample . 86
response . 87
RFSRCModel . 88
RPartModel . 91
SelectedInput . 92
SelectedModel . 94
settings . 95
StackedModel . 97
step_kmeans . 98
step_kmedoids . 100
step_lincomp . 103
step_sbf . 105
step_spca . 107
summary . 109
SuperModel . 110
SurvMatrix . 112
SurvRegModel . 112
SVMModel . 114
t.test . 116
TreeModel . 117
TunedInput . 118
TunedModel . 119
unMLModelFit . 121
varimp . 121
XGBModel . 122

Index 126

MachineShop-package MachineShop: Machine Learning Models and Tools

Description

Meta-package for statistical and machine learning with a unified interface for model fitting, predic-
tion, performance assessment, and presentation of results. Approaches for model fitting and pre-
diction of numerical, categorical, or censored time-to-event outcomes include traditional regression
models, regularization methods, tree-based methods, support vector machines, neural networks,
ensembles, data preprocessing, filtering, and model tuning and selection. Performance metrics
are provided for model assessment and can be estimated with independent test sets, split sampling,
cross-validation, or bootstrap resampling. Resample estimation can be executed in parallel for faster
processing and nested in cases of model tuning and selection. Modeling results can be summarized
with descriptive statistics; calibration curves; variable importance; partial dependence plots; confu-
sion matrices; and ROC, lift, and other performance curves.

MachineShop-package 5

Details

The following set of model fitting, prediction, and performance assessment functions are available
for MachineShop models.

Training:

fit Model fitting
resample Resample estimation of model performance

Tuning Grids:

expand_model Model expansion over tuning parameters
expand_params Model parameters expansion
expand_steps Recipe step parameters expansion
get_grid Model tuning grid extraction

Response Values:

response Observed
predict Predicted

Performance Assessment:

calibration Model calibration
confusion Confusion matrix
dependence Parital dependence
diff Model performance differences
lift Lift curves
performance metrics Model performance metrics
performance_curve Model performance curves
varimp Variable importance

Methods for resample estimation include

BootControl Simple bootstrap
BootOptimismControl Optimism-corrected bootstrap
CVControl Repeated K-fold cross-validation
CVOptimismControl Optimism-corrected cross-validation
OOBControl Out-of-bootstrap
SplitControl Split training-testing
TrainControl Training resubstitution

6 .

Graphical and tabular summaries of modeling results can be obtained with

plot
print
summary

Further information on package features is available with

metricinfo Performance metric information
modelinfo Model information
settings Global settings

Custom metrics and models can be created with the MLMetric and MLModel constructors.

Author(s)

Maintainer: Brian J Smith <brian-j-smith@uiowa.edu>

See Also

Useful links:

• https://brian-j-smith.github.io/MachineShop/

• Report bugs at https://github.com/brian-j-smith/MachineShop/issues

. Quote Operator

Description

Shorthand notation for the quote function. The quote operator simply returns its argument uneval-
uated and can be applied to any R expression. Useful for calling model constructors with quoted
parameter values that are defined in terms of nobs, nvars, or y.

Usage

.(expr)

Arguments

expr any syntactically valid R expression.

Value

The quoted (unevaluated) expression.

https://brian-j-smith.github.io/MachineShop/
https://github.com/brian-j-smith/MachineShop/issues

AdaBagModel 7

See Also

quote

Examples

Stepwise variable selection with BIC
glm_fit <- fit(sale_amount ~ ., ICHomes, GLMStepAICModel(k = .(log(nobs))))
varimp(glm_fit)

AdaBagModel Bagging with Classification Trees

Description

Fits the Bagging algorithm proposed by Breiman in 1996 using classification trees as single classi-
fiers.

Usage

AdaBagModel(
mfinal = 100,
minsplit = 20,
minbucket = round(minsplit/3),
cp = 0.01,
maxcompete = 4,
maxsurrogate = 5,
usesurrogate = 2,
xval = 10,
surrogatestyle = 0,
maxdepth = 30

)

Arguments

mfinal number of trees to use.
minsplit minimum number of observations that must exist in a node in order for a split to

be attempted.
minbucket minimum number of observations in any terminal node.
cp complexity parameter.
maxcompete number of competitor splits retained in the output.
maxsurrogate number of surrogate splits retained in the output.
usesurrogate how to use surrogates in the splitting process.
xval number of cross-validations.
surrogatestyle controls the selection of a best surrogate.
maxdepth maximum depth of any node of the final tree, with the root node counted as

depth 0.

8 AdaBoostModel

Details

Response Types: factor

Automatic Tuning of Grid Parameters: mfinal, maxdepth

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

bagging, fit, resample

Examples

Requires prior installation of suggested package adabag to run

fit(Species ~ ., data = iris, model = AdaBagModel(mfinal = 5))

AdaBoostModel Boosting with Classification Trees

Description

Fits the AdaBoost.M1 (Freund and Schapire, 1996) and SAMME (Zhu et al., 2009) algorithms
using classification trees as single classifiers.

Usage

AdaBoostModel(
boos = TRUE,
mfinal = 100,
coeflearn = c("Breiman", "Freund", "Zhu"),
minsplit = 20,
minbucket = round(minsplit/3),
cp = 0.01,
maxcompete = 4,
maxsurrogate = 5,
usesurrogate = 2,
xval = 10,
surrogatestyle = 0,
maxdepth = 30

)

AdaBoostModel 9

Arguments

boos if TRUE, then bootstrap samples are drawn from the training set using the obser-
vation weights at each iteration. If FALSE, then all observations are used with
their weights.

mfinal number of iterations for which boosting is run.

coeflearn learning algorithm.

minsplit minimum number of observations that must exist in a node in order for a split to
be attempted.

minbucket minimum number of observations in any terminal node.

cp complexity parameter.

maxcompete number of competitor splits retained in the output.

maxsurrogate number of surrogate splits retained in the output.

usesurrogate how to use surrogates in the splitting process.

xval number of cross-validations.

surrogatestyle controls the selection of a best surrogate.

maxdepth maximum depth of any node of the final tree, with the root node counted as
depth 0.

Details

Response Types: factor

Automatic Tuning of Grid Parameters: mfinal, maxdepth, coeflearn*

* included only in randomly sampled grid points

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

boosting, fit, resample

Examples

Requires prior installation of suggested package adabag to run

fit(Species ~ ., data = iris, model = AdaBoostModel(mfinal = 5))

10 BARTMachineModel

as.MLModel Coerce to an MLModel

Description

Function to coerce an MLModelFit object to an MLModel.

Usage

as.MLModel(x, ...)

S3 method for class 'MLModelFit'
as.MLModel(x, ...)

Arguments

x model fit result.

... arguments passed to other methods.

Value

MLModel class object.

BARTMachineModel Bayesian Additive Regression Trees Model

Description

Builds a BART model for regression or classification.

Usage

BARTMachineModel(
num_trees = 50,
num_burn = 250,
num_iter = 1000,
alpha = 0.95,
beta = 2,
k = 2,
q = 0.9,
nu = 3,
mh_prob_steps = c(2.5, 2.5, 4)/9,
verbose = FALSE,
...

)

BARTMachineModel 11

Arguments

num_trees number of trees to be grown in the sum-of-trees model.

num_burn number of MCMC samples to be discarded as "burn-in".

num_iter number of MCMC samples to draw from the posterior distribution.

alpha, beta base and power hyperparameters in tree prior for whether a node is nonterminal
or not.

k regression prior probability that E(Y |X) is contained in the interval (ymin, ymax),
based on a normal distribution.

q quantile of the prior on the error variance at which the data-based estimate is
placed.

nu regression degrees of freedom for the inverse sigma2 prior.

mh_prob_steps vector of prior probabilities for proposing changes to the tree structures: (GROW,
PRUNE, CHANGE).

verbose logical indicating whether to print progress information about the algorithm.

... additional arguments to bartMachine.

Details

Response Types: binary factor, numeric

Automatic Tuning of Grid Parameters: alpha, beta, k, nu

Further model details can be found in the source link below.

In calls to varimp for BARTMachineModel, argument metric may be specified as "splits" (de-
fault) for the proportion of time each predictor is chosen for a splitting rule or as "trees" for the
proportion of times each predictor appears in a tree. Argument num_replicates is also available
to control the number of BART replicates used in estimating the inclusion proportions [default: 5].
Variable importance is automatically scaled to range from 0 to 100. To obtain unscaled importance
values, set scale = FALSE. See example below.

Value

MLModel class object.

See Also

bartMachine, fit, resample

Examples

Requires prior installation of suggested package bartMachine to run

model_fit <- fit(sale_amount ~ ., data = ICHomes, model = BARTMachineModel)
varimp(model_fit, metric = "splits", num_replicates = 20, scale = FALSE)

12 BARTModel

BARTModel Bayesian Additive Regression Trees Model

Description

Flexible nonparametric modeling of covariates for continuous, binary, categorical and time-to-event
outcomes.

Usage

BARTModel(
K = NULL,
sparse = FALSE,
theta = 0,
omega = 1,
a = 0.5,
b = 1,
rho = NULL,
augment = FALSE,
xinfo = NULL,
usequants = FALSE,
sigest = NA,
sigdf = 3,
sigquant = 0.9,
lambda = NA,
k = 2,
power = 2,
base = 0.95,
tau.num = NULL,
offset = NULL,
ntree = NULL,
numcut = 100,
ndpost = 1000,
nskip = NULL,
keepevery = NULL,
printevery = 1000

)

Arguments

K if provided, then coarsen the times of survival responses per the quantiles 1/K, 2/K, ...,K/K
to reduce computational burdern.

sparse logical indicating whether to perform variable selection based on a sparse Dirich-
let prior rather than simply uniform; see Linero 2016.

theta, omega theta and omega parameters; zero means random.

BARTModel 13

a, b sparse parameters for Beta(a, b) prior: 0.5 <= a <= 1 where lower values
induce more sparsity and typically b = 1.

rho sparse parameter: typically rho = p where p is the number of covariates under
consideration.

augment whether data augmentation is to be performed in sparse variable selection.

xinfo optional matrix whose rows are the covariates and columns their cutpoints.

usequants whether covariate cutpoints are defined by uniform quantiles or generated uni-
formly.

sigest normal error variance prior for numeric response variables.

sigdf degrees of freedom for error variance prior.

sigquant quantile at which a rough estimate of the error standard deviation is placed.

lambda scale of the prior error variance.

k number of standard deviations f(x) is away from +/-3 for categorical response
variables.

power, base power and base parameters for tree prior.

tau.num numerator in the tau definition, i.e., tau = tau.num/(k ∗ sqrt(ntree)).

offset override for the default offset of F−1(mean(y)) in the multivariate response
probability P (y[j] = 1|x) = F (f(x)[j] + offset[j]).

ntree number of trees in the sum.

numcut number of possible covariate cutoff values.

ndpost number of posterior draws returned.

nskip number of MCMC iterations to be treated as burn in.

keepevery interval at which to keep posterior draws.

printevery interval at which to print MCMC progress.

Details

Response Types: factor, numeric, Surv

Default values for the NULL arguments and further model details can be found in the source links
below.

Value

MLModel class object.

See Also

gbart, mbart, surv.bart, fit, resample

14 BlackBoostModel

Examples

Requires prior installation of suggested package BART to run

fit(sale_amount ~ ., data = ICHomes, model = BARTModel)

BlackBoostModel Gradient Boosting with Regression Trees

Description

Gradient boosting for optimizing arbitrary loss functions where regression trees are utilized as base-
learners.

Usage

BlackBoostModel(
family = NULL,
mstop = 100,
nu = 0.1,
risk = c("inbag", "oobag", "none"),
stopintern = FALSE,
trace = FALSE,
teststat = c("quadratic", "maximum"),
testtype = c("Teststatistic", "Univariate", "Bonferroni", "MonteCarlo"),
mincriterion = 0,
minsplit = 10,
minbucket = 4,
maxdepth = 2,
saveinfo = FALSE,
...

)

Arguments

family optional Family object. Set automatically according to the class type of the
response variable.

mstop number of initial boosting iterations.

nu step size or shrinkage parameter between 0 and 1.

risk method to use in computing the empirical risk for each boosting iteration.

stopintern logical inidicating whether the boosting algorithm stops internally when the out-
of-bag risk increases at a subsequent iteration.

trace logical indicating whether status information is printed during the fitting pro-
cess.

BlackBoostModel 15

teststat type of the test statistic to be applied for variable selection.

testtype how to compute the distribution of the test statistic.

mincriterion value of the test statistic or 1 - p-value that must be exceeded in order to imple-
ment a split.

minsplit minimum sum of weights in a node in order to be considered for splitting.

minbucket minimum sum of weights in a terminal node.

maxdepth maximum depth of the tree.

saveinfo logical indicating whether to store information about variable selection in info
slot of each partynode.

... additional arguments to ctree_control.

Details

Response Types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate,
Surv

Automatic Tuning of Grid Parameters: mstop, maxdepth

Default values for the NULL arguments and further model details can be found in the source links
below.

Value

MLModel class object.

See Also

blackboost, Family, ctree_control, fit, resample

Examples

Requires prior installation of suggested packages mboost and partykit to run

data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = BlackBoostModel)

16 C50Model

C50Model C5.0 Decision Trees and Rule-Based Model

Description

Fit classification tree models or rule-based models using Quinlan’s C5.0 algorithm.

Usage

C50Model(
trials = 1,
rules = FALSE,
subset = TRUE,
bands = 0,
winnow = FALSE,
noGlobalPruning = FALSE,
CF = 0.25,
minCases = 2,
fuzzyThreshold = FALSE,
sample = 0,
earlyStopping = TRUE

)

Arguments

trials integer number of boosting iterations.

rules logical indicating whether to decompose the tree into a rule-based model.

subset logical indicating whether the model should evaluate groups of discrete predic-
tors for splits.

bands integer between 2 and 1000 specifying a number of bands into which to group
rules ordered by their affect on the error rate.

winnow logical indicating use of predictor winnowing (i.e. feature selection).
noGlobalPruning

logical indicating a final, global pruning step to simplify the tree.

CF number in (0, 1) for the confidence factor.

minCases integer for the smallest number of samples that must be put in at least two of the
splits.

fuzzyThreshold logical indicating whether to evaluate possible advanced splits of the data.

sample value between (0, 0.999) that specifies the random proportion of data to use in
training the model.

earlyStopping logical indicating whether the internal method for stopping boosting should be
used.

calibration 17

Details

Response Types: factor

Automatic Tuning of Grid Parameters: trials, rules, winnow

Latter arguments are passed to C5.0Control. Further model details can be found in the source link
below.

In calls to varimp for C50Model, argument metric may be specified as "usage" (default) for the
percentage of training set samples that fall into all terminal nodes after the split of each predictor
or as "splits" for the percentage of splits associated with each predictor. Variable importance is
automatically scaled to range from 0 to 100. To obtain unscaled importance values, set scale =
FALSE. See example below.

Value

MLModel class object.

See Also

C5.0, fit, resample

Examples

Requires prior installation of suggested package C50 to run

model_fit <- fit(Species ~ ., data = iris, model = C50Model)
varimp(model_fit, metric = "splits", scale = FALSE)

calibration Model Calibration

Description

Calculate calibration estimates from observed and predicted responses.

Usage

calibration(
x,
y = NULL,
breaks = 10,
span = 0.75,
dist = NULL,
na.rm = TRUE,
...

)

18 CForestModel

Arguments

x observed responses or resample result containing observed and predicted re-
sponses.

y predicted responses if not contained in x.

breaks value defining the response variable bins within which to calculate observed
mean values. May be specified as a number of bins, a vector of breakpoints, or
NULL to fit smooth curves with splines for predicted survival probabilities and
with loess for others.

span numeric parameter controlling the degree of loess smoothing.

dist character string specifying a distribution with which to estimate observed sur-
vival means. Possible values are "empirical" for the Kaplan-Meier estima-
tor, "exponential", "extreme", "gaussian", "loggaussian", "logistic",
"loglogistic", "lognormal", "rayleigh", "t", or "weibull" (default).

na.rm logical indicating whether to remove observed or predicted responses that are
NA when calculating metrics.

... arguments passed to other methods.

Value

Calibration class object that inherits from data.frame.

See Also

c, plot

Examples

Requires prior installation of suggested package gbm to run

library(survival)

res <- resample(Surv(time, status) ~ ., data = veteran, model = GBMModel,
control = CVControl(times = c(90, 180, 360)))

cal <- calibration(res)
plot(cal)

CForestModel Conditional Random Forest Model

Description

An implementation of the random forest and bagging ensemble algorithms utilizing conditional
inference trees as base learners.

CForestModel 19

Usage

CForestModel(
teststat = c("quad", "max"),
testtype = c("Univariate", "Teststatistic", "Bonferroni", "MonteCarlo"),
mincriterion = 0,
ntree = 500,
mtry = 5,
replace = TRUE,
fraction = 0.632

)

Arguments

teststat character specifying the type of the test statistic to be applied.

testtype character specifying how to compute the distribution of the test statistic.

mincriterion value of the test statistic that must be exceeded in order to implement a split.

ntree number of trees to grow in a forest.

mtry number of input variables randomly sampled as candidates at each node for
random forest like algorithms.

replace logical indicating whether sampling of observations is done with or without re-
placement.

fraction fraction of number of observations to draw without replacement (only relevant
if replace = FALSE).

Details

Response Types: factor, numeric, Surv

Automatic Tuning of Grid Parameters: mtry

Supplied arguments are passed to cforest_control. Further model details can be found in the
source link below.

Value

MLModel class object.

See Also

cforest, fit, resample

Examples

fit(sale_amount ~ ., data = ICHomes, model = CForestModel)

20 combine

combine Combine MachineShop Objects

Description

Combine one or more MachineShop objects of the same class.

Usage

S3 method for class 'Calibration'
c(...)

S3 method for class 'ConfusionList'
c(...)

S3 method for class 'ConfusionMatrix'
c(...)

S3 method for class 'LiftCurve'
c(...)

S3 method for class 'ListOf'
c(...)

S3 method for class 'PerformanceCurve'
c(...)

S3 method for class 'Resamples'
c(...)

S4 method for signature 'SurvMatrix,SurvMatrix'
e1 + e2

Arguments

... named or unnamed calibration, confusion, lift, performance curve, summary, or
resample results. Curves must have been generated with the same performance
metrics and resamples with the same resampling control.

e1, e2 objects.

Value

Object of the same class as the arguments.

confusion 21

confusion Confusion Matrix

Description

Calculate confusion matrices of predicted and observed responses.

Usage

confusion(
x,
y = NULL,
cutoff = MachineShop::settings("cutoff"),
na.rm = TRUE,
...

)

ConfusionMatrix(data = NA, ordered = FALSE)

Arguments

x factor of observed responses or resample result containing observed and pre-
dicted responses.

y predicted responses if not contained in x.

cutoff numeric (0, 1) threshold above which binary factor probabilities are classified
as events and below which survival probabilities are classified. If NULL, then bi-
nary responses are summed directly over predicted class probabilities, whereas
a default cutoff of 0.5 is used for survival probabilities. Class probability sum-
mations and survival will appear as decimal numbers that can be interpreted as
expected counts.

na.rm logical indicating whether to remove observed or predicted responses that are
NA when calculating metrics.

... arguments passed to other methods.

data square matrix, or object that can be converted to one, of cross-classified pre-
dicted and observed values in the rows and columns, respectively.

ordered logical indicating whether the confusion matrix row and columns should be re-
garded as ordered.

Value

The return value is a ConfusionMatrix class object that inherits from table if x and y responses
are specified or a ConfusionList object that inherits from list if x is a Resamples object.

See Also

c, plot, summary

22 CoxModel

Examples

Requires prior installation of suggested package gbm to run

res <- resample(Species ~ ., data = iris, model = GBMModel)
(conf <- confusion(res))
plot(conf)

CoxModel Proportional Hazards Regression Model

Description

Fits a Cox proportional hazards regression model. Time dependent variables, time dependent strata,
multiple events per subject, and other extensions are incorporated using the counting process for-
mulation of Andersen and Gill.

Usage

CoxModel(ties = c("efron", "breslow", "exact"), ...)

CoxStepAICModel(
ties = c("efron", "breslow", "exact"),
...,
direction = c("both", "backward", "forward"),
scope = NULL,
k = 2,
trace = FALSE,
steps = 1000

)

Arguments

ties character string specifying the method for tie handling.

... arguments passed to coxph.control.

direction mode of stepwise search, can be one of "both" (default), "backward", or "forward".

scope defines the range of models examined in the stepwise search. This should be a
list containing components upper and lower, both formulae.

k multiple of the number of degrees of freedom used for the penalty. Only k = 2
gives the genuine AIC; k = .(log(nobs)) is sometimes referred to as BIC or
SBC.

trace if positive, information is printed during the running of stepAIC. Larger values
may give more information on the fitting process.

steps maximum number of steps to be considered.

dependence 23

Details

Response Types: Surv

Default values for the NULL arguments and further model details can be found in the source link
below.

In calls to varimp for CoxModel and CoxStepAICModel, numeric argument base may be specified
for the (negative) logarithmic transformation of p-values [defaul: exp(1)]. Transformed p-values
are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain
unscaled importance values, set scale = FALSE.

#’ @return MLModel class object.

See Also

coxph, coxph.control, stepAIC, fit, resample

Examples

library(survival)

fit(Surv(time, status) ~ ., data = veteran, model = CoxModel)

dependence Partial Dependence

Description

Calculate partial dependence of a response on select predictor variables.

Usage

dependence(
object,
data = NULL,
select = NULL,
interaction = FALSE,
n = 10,
intervals = c("uniform", "quantile"),
stats = MachineShop::settings("stats.PartialDependence")

)

Arguments

object model fit result.

data data frame containing all predictor variables. If not specified, the training data
will be used by default.

24 diff

select expression indicating predictor variables for which to compute partial depen-
dence (see subset for syntax) [default: all].

interaction logical indicating whether to calculate dependence on the interacted predictors.

n number of predictor values at which to perform calculations.

intervals character string specifying whether the n values are spaced uniformly ("uniform")
or according to variable quantiles ("quantile").

stats function, function name, or vector of these with which to compute response
variable summary statistics over non-selected predictor variables.

Value

PartialDependence class object that inherits from data.frame.

See Also

plot

Examples

Requires prior installation of suggested package gbm to run

gbm_fit <- fit(Species ~ ., data = iris, model = GBMModel)
(pd <- dependence(gbm_fit, select = c(Petal.Length, Petal.Width)))
plot(pd)

diff Model Performance Differences

Description

Pairwise model differences in resampled performance metrics.

Usage

S3 method for class 'MLModel'
diff(x, ...)

S3 method for class 'Performance'
diff(x, ...)

S3 method for class 'Resamples'
diff(x, ...)

DiscreteVariate 25

Arguments

x model performance or resample result.
... arguments passed to other methods.

Value

PerformanceDiff class object that inherits from Performance.

See Also

t.test, plot, summary

Examples

Requires prior installation of suggested package gbm to run

Survival response example
library(survival)

fo <- Surv(time, status) ~ .
control <- CVControl()

gbm_res1 <- resample(fo, data = veteran, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, data = veteran, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, data = veteran, GBMModel(n.trees = 100), control)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
res_diff <- diff(res)
summary(res_diff)
plot(res_diff)

DiscreteVariate Discrete Variate Constructors

Description

Create a variate of binomial counts, discrete numbers, negative binomial counts, or Poisson counts.

Usage

BinomialVariate(x = integer(), size = integer())

DiscreteVariate(x = integer(), min = -Inf, max = Inf)

NegBinomialVariate(x = integer())

PoissonVariate(x = integer())

26 EarthModel

Arguments

x numeric vector.

size number or numeric vector of binomial trials.

min, max minimum and maximum bounds for discrete numbers.

Value

BinomialVariate object class, DiscreteVariate that inherits from numeric, or NegBinomialVariate
or PoissonVariate that inherit from DiscreteVariate.

See Also

role_binom

Examples

BinomialVariate(rbinom(25, 10, 0.5), size = 10)
PoissonVariate(rpois(25, 10))

EarthModel Multivariate Adaptive Regression Splines Model

Description

Build a regression model using the techniques in Friedman’s papers "Multivariate Adaptive Regres-
sion Splines" and "Fast MARS".

Usage

EarthModel(
pmethod = c("backward", "none", "exhaustive", "forward", "seqrep", "cv"),
trace = 0,
degree = 1,
nprune = NULL,
nfold = 0,
ncross = 1,
stratify = TRUE

)

Arguments

pmethod pruning method.

trace level of execution information to display.

degree maximum degree of interaction.

nprune maximum number of terms (including intercept) in the pruned model.

expand_model 27

nfold number of cross-validation folds.

ncross number of cross-validations if nfold > 1.

stratify logical indicating whether to stratify cross-validation samples by the response
levels.

Details

Response Types: factor, numeric

Automatic Tuning of Grid Parameters: nprune, degree*

* included only in randomly sampled grid points

Default values for the NULL arguments and further model details can be found in the source link
below.

In calls to varimp for EarthModel, argument metric may be specified as "gcv" (default) for the
generalized cross-validation decrease over all subsets that include each predictor, as "rss" for the
residual sums of squares decrease, or as "nsubsets" for the number of model subsets that include
each predictor. Variable importance is automatically scaled to range from 0 to 100. To obtain
unscaled importance values, set scale = FALSE. See example below.

Value

MLModel class object.

See Also

earth, fit, resample

Examples

Requires prior installation of suggested package earth to run

model_fit <- fit(Species ~ ., data = iris, model = EarthModel)
varimp(model_fit, metric = "nsubsets", scale = FALSE)

expand_model Model Expansion Over Tuning Parameters

Description

Expand a model over all combinations of a grid of tuning parameters.

Usage

expand_model(x, ..., random = FALSE)

28 expand_params

Arguments

x model function, function name, or call.

... named vectors or factors or a list of these containing the parameter values over
which to expand x.

random number of points to be randomly sampled from the parameter grid or FALSE if
all points are to be returned.

Value

list of expanded models.

See Also

SelectedModel

Examples

Requires prior installation of suggested package gbm to run

data(Boston, package = "MASS")

models <- expand_model(GBMModel, n.trees = c(50, 100),
interaction.depth = 1:2)

fit(medv ~ ., data = Boston, model = SelectedModel(models))

expand_params Model Parameters Expansion

Description

Create a grid of parameter values from all combinations of supplied inputs.

Usage

expand_params(..., random = FALSE)

Arguments

... named vectors or factors or a list of these containing the parameter values over
which to create the grid.

random number of points to be randomly sampled from the parameter grid or FALSE if
all points are to be returned.

expand_steps 29

Value

A data frame containing one row for each combination of the supplied inputs.

See Also

TunedModel

Examples

Requires prior installation of suggested package gbm to run

data(Boston, package = "MASS")

grid <- expand_params(
n.trees = c(50, 100),
interaction.depth = 1:2

)

fit(medv ~ ., data = Boston, model = TunedModel(GBMModel, grid = grid))

expand_steps Recipe Step Parameters Expansion

Description

Create a grid of parameter values from all combinations of lists supplied for steps of a preprocessing
recipe.

Usage

expand_steps(..., random = FALSE)

Arguments

... one or more lists containing parameter values over which to create the grid. For
each list an argument name should be given as the id of the recipe step to which
it corresponds.

random number of points to be randomly sampled from the parameter grid or FALSE if
all points are to be returned.

Value

RecipeGrid class object that inherits from data.frame.

30 extract

See Also

TunedInput

Examples

library(recipes)
data(Boston, package = "MASS")

rec <- recipe(medv ~ ., data = Boston) %>%
step_corr(all_numeric(), -all_outcomes(), id = "corr") %>%
step_pca(all_numeric(), -all_outcomes(), id = "pca")

expand_steps(
corr = list(threshold = c(0.8, 0.9),

method = c("pearson", "spearman")),
pca = list(num_comp = 1:3)

)

extract Extract Elements of an Object

Description

Operators acting on data structures to extract elements.

Usage

S3 method for class 'BinomialVariate'
x[i, j, ..., drop = FALSE]

S4 method for signature 'DiscreteVariate,ANY,missing,missing'
x[i]

S3 method for class 'ModelFrame'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ModelFrame,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ModelFrame,ANY,missing,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'ModelFrame,missing,missing,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'RecipeGrid,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

FDAModel 31

S4 method for signature 'Resamples,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'Resamples,ANY,missing,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'Resamples,missing,missing,ANY'
x[i, j, ..., drop = FALSE]

S4 method for signature 'SurvMatrix,ANY,ANY,ANY'
x[i, j, ..., drop = FALSE]

Arguments

x object from which to extract elements.

i, j, ... indices specifying elements to extract.

drop logical indicating that the result be returned as an object coerced to the lowest
dimension possible if TRUE or with the original dimensions and class otherwise.

FDAModel Flexible and Penalized Discriminant Analysis Models

Description

Performs flexible discriminant analysis.

Usage

FDAModel(
theta = NULL,
dimension = NULL,
eps = .Machine$double.eps,
method = .(mda::polyreg),
...

)

PDAModel(lambda = 1, df = NULL, ...)

Arguments

theta optional matrix of class scores, typically with number of columns less than one
minus the number of classes.

dimension dimension of the discriminant subspace, less than the number of classes, to use
for prediction.

eps numeric threshold for small singular values for excluding discriminant variables.

32 FDAModel

method regression function used in optimal scaling. The default of linear regression
is provided by polyreg from the mda package. For penalized discriminant
analysis, gen.ridge is appropriate. Other possibilities are mars for multivari-
ate adaptive regression splines and bruto for adaptive backfitting of additive
splines. Use the . operator to quote specified functions.

... additional arguments to method for FDAModel and to FDAModel for PDAModel.

lambda shrinkage penalty coefficient.

df alternative specification of lambda in terms of equivalent degrees of freedom.

Details

Response Types: factor

Automatic Tuning of Grid Parameters • FDAModel: nprune, degree*
• PDAModel: lambda

* included only in randomly sampled grid points

The predict function for this model additionally accepts the following argument.

prior prior class membership probabilities for prediction data if different from the training set.

Default values for the NULL arguments and further model details can be found in the source links
below.

Value

MLModel class object.

See Also

fda, predict.fda, fit, resample

Examples

Requires prior installation of suggested package mda to run

fit(Species ~ ., data = iris, model = FDAModel)

Requires prior installation of suggested package mda to run

fit(Species ~ ., data = iris, model = PDAModel)

fit 33

fit Model Fitting

Description

Fit a model to estimate its parameters from a data set.

Usage

fit(x, ...)

S3 method for class 'formula'
fit(x, data, model, ...)

S3 method for class 'matrix'
fit(x, y, model, ...)

S3 method for class 'ModelFrame'
fit(x, model, ...)

S3 method for class 'recipe'
fit(x, model, ...)

S3 method for class 'MLModel'
fit(x, ...)

S3 method for class 'MLModelFunction'
fit(x, ...)

Arguments

x input specifying a relationship between model predictor and response variables.
Alternatively, a model function or call may be given first followed by the input
specification.

... arguments passed to other methods.

data data frame containing observed predictors and outcomes.

model model function, function name, or call; ignored and can be omitted when fitting
modeled inputs.

y response variable.

Details

User-specified case weights may be specified for ModelFrames upon creation with the weights
argument in its constructor.

Variables in recipe specifications may be designated as case weights with the role_case function.

34 GAMBoostModel

Value

MLModelFit class object.

See Also

as.MLModel, response, predict, varimp

Examples

Requires prior installation of suggested package gbm to run

Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
varimp(gbm_fit)

GAMBoostModel Gradient Boosting with Additive Models

Description

Gradient boosting for optimizing arbitrary loss functions, where component-wise arbitrary base-
learners, e.g., smoothing procedures, are utilized as additive base-learners.

Usage

GAMBoostModel(
family = NULL,
baselearner = c("bbs", "bols", "btree", "bss", "bns"),
dfbase = 4,
mstop = 100,
nu = 0.1,
risk = c("inbag", "oobag", "none"),
stopintern = FALSE,
trace = FALSE

)

Arguments

family optional Family object. Set automatically according to the class type of the
response variable.

baselearner character specifying the component-wise base learner to be used.

dfbase gobal degrees of freedom for P-spline base learners ("bbs").

GBMModel 35

mstop number of initial boosting iterations.

nu step size or shrinkage parameter between 0 and 1.

risk method to use in computing the empirical risk for each boosting iteration.

stopintern logical inidicating whether the boosting algorithm stops internally when the out-
of-bag risk increases at a subsequent iteration.

trace logical indicating whether status information is printed during the fitting pro-
cess.

Details

Response Types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate,
Surv

Automatic Tuning of Grid Parameters: mstop

Default values for the NULL arguments and further model details can be found in the source links
below.

Value

MLModel class object.

See Also

gamboost, Family, baselearners, fit, resample

Examples

Requires prior installation of suggested package mboost to run

data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = GAMBoostModel)

GBMModel Generalized Boosted Regression Model

Description

Fits generalized boosted regression models.

36 GBMModel

Usage

GBMModel(
distribution = NULL,
n.trees = 100,
interaction.depth = 1,
n.minobsinnode = 10,
shrinkage = 0.1,
bag.fraction = 0.5

)

Arguments

distribution optional character string specifying the name of the distribution to use or list
with a component name specifying the distribution and any additional parame-
ters needed. Set automatically according to the class type of the response vari-
able.

n.trees total number of trees to fit.
interaction.depth

maximum depth of variable interactions.
n.minobsinnode minimum number of observations in the trees terminal nodes.
shrinkage shrinkage parameter applied to each tree in the expansion.
bag.fraction fraction of the training set observations randomly selected to propose the next

tree in the expansion.

Details

Response Types: factor, numeric, PoissonVariate, Surv
Automatic Tuning of Grid Parameters: n.trees, interaction.depth, shrinkage*, n.minobsinnode*

* included only in randomly sampled grid points

Default values for the NULL arguments and further model details can be found in the source link
below.

Value

MLModel class object.

See Also

gbm, fit, resample

Examples

Requires prior installation of suggested package gbm to run

fit(Species ~ ., data = iris, model = GBMModel)

get_grid 37

get_grid Model Tuning Grid

Description

Extract a model-defined grid of tuning parameter values.

Usage

get_grid(x, ...)

Default S3 method:
get_grid(x, ..., model, size = 3, random = FALSE, info = FALSE)

S3 method for class 'formula'
get_grid(x, data, ...)

S3 method for class 'matrix'
get_grid(x, y, ...)

S3 method for class 'ModelFrame'
get_grid(x, ...)

S3 method for class 'recipe'
get_grid(x, ...)

S3 method for class 'MLModel'
get_grid(x, ...)

S3 method for class 'MLModelFunction'
get_grid(x, ...)

Arguments

x optional input specifying a relationship between model predictor and response
variables. Alternatively, a model function or call may be given first followed by
the input specification.

... arguments passed to the default method.

model model function, function name, or call.

size single integer or vector of integers whose positions or names match the parame-
ters in the model’s tuning grid and which specify the number of values to use in
constructing the grid.

random number of unique grid points to sample at random, Inf for all random points, or
FALSE for all fixed points.

info logical indicating whether to return the grid construction information rather than
the grid values.

38 GLMBoostModel

data data frame containing observed predictors and outcomes.

y response variable.

Details

The get_grid function enables manual extraction and viewing of grids created automatically if
TunedModel is called with a Grid object.

Value

A data frame of parameter values or NULL if data are required for construction of the grid but not
supplied.

See Also

TunedModel, Grid

Examples

get_grid(GBMModel, size = 10)

get_grid(sale_amount ~ ., data = ICHomes, model = GLMNetModel,
size = c(lambda = 10, alpha = 5))

GLMBoostModel Gradient Boosting with Linear Models

Description

Gradient boosting for optimizing arbitrary loss functions where component-wise linear models are
utilized as base-learners.

Usage

GLMBoostModel(
family = NULL,
mstop = 100,
nu = 0.1,
risk = c("inbag", "oobag", "none"),
stopintern = FALSE,
trace = FALSE

)

GLMBoostModel 39

Arguments

family optional Family object. Set automatically according to the class type of the
response variable.

mstop number of initial boosting iterations.

nu step size or shrinkage parameter between 0 and 1.

risk method to use in computing the empirical risk for each boosting iteration.

stopintern logical inidicating whether the boosting algorithm stops internally when the out-
of-bag risk increases at a subsequent iteration.

trace logical indicating whether status information is printed during the fitting pro-
cess.

Details

Response Types: binary factor, BinomialVariate, NegBinomialVariate, numeric, PoissonVariate,
Surv

Automatic Tuning of Grid Parameters: mstop

Default values for the NULL arguments and further model details can be found in the source links
below.

Value

MLModel class object.

See Also

glmboost, Family, fit, resample

Examples

Requires prior installation of suggested package mboost to run

data(Pima.tr, package = "MASS")

fit(type ~ ., data = Pima.tr, model = GLMBoostModel)

40 GLMModel

GLMModel Generalized Linear Model

Description

Fits generalized linear models, specified by giving a symbolic description of the linear predictor
and a description of the error distribution.

Usage

GLMModel(family = NULL, quasi = FALSE, ...)

GLMStepAICModel(
family = NULL,
quasi = FALSE,
...,
direction = c("both", "backward", "forward"),
scope = NULL,
k = 2,
trace = FALSE,
steps = 1000

)

Arguments

family optional error distribution and link function to be used in the model. Set auto-
matically according to the class type of the response variable.

quasi logical indicator for over-dispersion of binomial and Poisson families; i.e., dis-
persion parameters not fixed at one.

... arguments passed to glm.control.

direction mode of stepwise search, can be one of "both" (default), "backward", or "forward".

scope defines the range of models examined in the stepwise search. This should be a
list containing components upper and lower, both formulae.

k multiple of the number of degrees of freedom used for the penalty. Only k = 2
gives the genuine AIC; k = .(log(nobs)) is sometimes referred to as BIC or
SBC.

trace if positive, information is printed during the running of stepAIC. Larger values
may give more information on the fitting process.

steps maximum number of steps to be considered.

Details

GLMModel Response Types: BinomialVariate, factor, matrix, NegBinomialVariate, numeric,
PoissonVariate

GLMNetModel 41

GLMStepAICModel Response Types: binary factor, BinomialVariate, NegBinomialVariate,
numeric, PoissonVariate

Default values for the NULL arguments and further model details can be found in the source link
below.

In calls to varimp for GLMModel and GLMStepAICModel, numeric argument base may be specified
for the (negative) logarithmic transformation of p-values [defaul: exp(1)]. Transformed p-values
are automatically scaled in the calculation of variable importance to range from 0 to 100. To obtain
unscaled importance values, set scale = FALSE.

Value

MLModel class object.

See Also

glm, glm.control, stepAIC, fit, resample

Examples

fit(sale_amount ~ ., data = ICHomes, model = GLMModel)

GLMNetModel GLM Lasso or Elasticnet Model

Description

Fit a generalized linear model via penalized maximum likelihood.

Usage

GLMNetModel(
family = NULL,
alpha = 1,
lambda = 0,
standardize = TRUE,
intercept = NULL,
penalty.factor = .(rep(1, nvars)),
standardize.response = FALSE,
thresh = 1e-07,
maxit = 1e+05,
type.gaussian = .(ifelse(nvars < 500, "covariance", "naive")),
type.logistic = c("Newton", "modified.Newton"),
type.multinomial = c("ungrouped", "grouped")

)

42 GLMNetModel

Arguments

family optional response type. Set automatically according to the class type of the
response variable.

alpha elasticnet mixing parameter.

lambda regularization parameter. The default value lambda = 0 performs no regular-
ization and should be increased to avoid model fitting issues if the number of
predictor variables is greater than the number of observations.

standardize logical flag for predictor variable standardization, prior to model fitting.

intercept logical indicating whether to fit intercepts.

penalty.factor vector of penalty factors to be applied to each coefficient.
standardize.response

logical indicating whether to standardize "mgaussian" response variables.

thresh convergence threshold for coordinate descent.

maxit maximum number of passes over the data for all lambda values.

type.gaussian algorithm type for guassian models.

type.logistic algorithm type for logistic models.
type.multinomial

algorithm type for multinomial models.

Details

Response Types: BinomialVariate, factor, matrix, numeric, PoissonVariate, Surv

Automatic Tuning of Grid Parameters: lambda, alpha

Default values for the NULL arguments and further model details can be found in the source link
below.

Value

MLModel class object.

See Also

glmnet, fit, resample

Examples

Requires prior installation of suggested package glmnet to run

fit(sale_amount ~ ., data = ICHomes, model = GLMNetModel(lambda = 0.01))

Grid 43

Grid Tuning Grid Control

Description

Defines control parameters for a tuning grid.

Usage

Grid(size = 3, random = FALSE, length = NULL)

Arguments

size single integer or vector of integers whose positions or names match the param-
eters in a model’s tuning grid and which specify the number of values to use in
constructing the grid.

random number of unique grid points to sample at random, Inf for all random points, or
FALSE for all fixed points.

length deprecated argument; use size instead.

Details

Returned Grid objects may be supplied to TunedModel for automated construction of model tuning
grids. These grids can be extracted manually and viewed with the get_grid function.

Value

Grid class object.

See Also

TunedModel, get_grid

Examples

TunedModel(GBMModel, grid = Grid(10, random = 5))

44 inputs

ICHomes Iowa City Home Sales Dataset

Description

Characteristics of homes sold in Iowa City, IA from 2005 to 2008 as reported by the county asses-
sor’s office.

Usage

ICHomes

Format

A data frame with 753 observations of 17 variables:

sale_amount sale amount in dollars.

sale_year sale year.

sale_month sale month.

built year in which the home was built.

style home stlye (Home/Condo)

construction home construction type.

base_size base foundation size in sq ft.

add_size size of additions made to the base foundation in sq ft.

garage1_size attached garage size in sq ft.

garage2_size detached garage size in sq ft.

lot_size total lot size in sq ft.

bedrooms number of bedrooms.

basement presence of a basement (No/Yes).

ac presence of central air conditioning (No/Yes).

attic presence of a finished attic (No/Yes).

lon,lat home longitude/latitude coordinates.

inputs Model Inputs

Description

Model inputs are the predictor and response variables whose relationship is determined by a model
fit. Input specifications supported by MachineShop are summarized in the table below.

KNNModel 45

formula Traditional model formula
matrix Design matrix of predictors
ModelFrame Model frame
recipe Preprocessing recipe roles and steps

Response variable types in the input specifications are defined by the user with the functions and
recipe roles:

Response Functions BinomialVariate
DiscreteVariate
factor
matrix
NegBinomialVariate
numeric
ordered
PoissonVariate
Surv

Recipe Roles role_binom
role_surv

Inputs may be combined, selected, or tuned with the following meta-input functions.

ModeledInput Input with a prespecified model
SelectedInput Input selection from a candidate set
TunedInput Input tuning over a parameter grid

See Also

fit, resample

KNNModel Weighted k-Nearest Neighbor Model

Description

Fit a k-nearest neighbor model for which the k nearest training set vectors (according to Minkowski
distance) are found for each row of the test set, and prediction is done via the maximum of summed
kernel densities.

Usage

KNNModel(
k = 7,

46 LARSModel

distance = 2,
scale = TRUE,
kernel = c("optimal", "biweight", "cos", "epanechnikov", "gaussian", "inv", "rank",

"rectangular", "triangular", "triweight")
)

Arguments

k numer of neigbors considered.

distance Minkowski distance parameter.

scale logical indicating whether to scale predictors to have equal standard deviations.

kernel kernel to use.

Details

Response Types: factor, numeric, ordinal

Automatic Tuning of Grid Parameters: k, distance*, kernel*

* included only in randomly sampled grid points

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

kknn, fit, resample

Examples

Requires prior installation of suggested package kknn to run

fit(Species ~ ., data = iris, model = KNNModel)

LARSModel Least Angle Regression, Lasso and Infinitesimal Forward Stagewise
Models

Description

Fit variants of Lasso, and provide the entire sequence of coefficients and fits, starting from zero to
the least squares fit.

LARSModel 47

Usage

LARSModel(
type = c("lasso", "lar", "forward.stagewise", "stepwise"),
trace = FALSE,
normalize = TRUE,
intercept = TRUE,
step = NULL,
use.Gram = TRUE

)

Arguments

type model type.

trace logical indicating whether status information is printed during the fitting pro-
cess.

normalize whether to standardize each variable to have unit L2 norm.

intercept whether to include an intercept in the model.

step algorithm step number to use for prediction. May be a decimal number indicat-
ing a fractional distance between steps. If specified, the maximum number of
algorithm steps will be ceiling(step); otherwise, step will be set equal to the
source package default maximum [default: max.steps].

use.Gram whether to precompute the Gram matrix.

Details

Response Types: numeric

Automatic Tuning of Grid Parameters: step

Default values for the NULL arguments and further model details can be found in the source link
below.

Value

MLModel class object.

See Also

lars, fit, resample

Examples

Requires prior installation of suggested package lars to run

fit(sale_amount ~ ., data = ICHomes, model = LARSModel)

48 LDAModel

LDAModel Linear Discriminant Analysis Model

Description

Performs linear discriminant analysis.

Usage

LDAModel(
prior = NULL,
tol = 1e-04,
method = c("moment", "mle", "mve", "t"),
nu = 5,
dimen = NULL,
use = c("plug-in", "debiased", "predictive")

)

Arguments

prior prior probabilities of class membership if specified or the class proportions in
the training set otherwise.

tol tolerance for the determination of singular matrices.

method type of mean and variance estimator.

nu degrees of freedom for method = "t".

dimen dimension of the space to use for prediction.

use type of parameter estimation to use for prediction.

Details

Response Types: factor

Automatic Tuning of Grid Parameters: dimen

The predict function for this model additionally accepts the following argument.

prior prior class membership probabilities for prediction data if different from the training set.

Default values for the NULL arguments and further model details can be found in the source links
below.

Value

MLModel class object.

See Also

lda, predict.lda, fit, resample

lift 49

Examples

fit(Species ~ ., data = iris, model = LDAModel)

lift Model Lift Curves

Description

Calculate lift curves from observed and predicted responses.

Usage

lift(x, y = NULL, na.rm = TRUE, ...)

Arguments

x observed responses or resample result containing observed and predicted re-
sponses.

y predicted responses if not contained in x.

na.rm logical indicating whether to remove observed or predicted responses that are
NA when calculating metrics.

... arguments passed to other methods.

Value

LiftCurve class object that inherits from PerformanceCurve.

See Also

c, plot, summary

Examples

Requires prior installation of suggested package gbm to run

data(Pima.tr, package = "MASS")

res <- resample(type ~ ., data = Pima.tr, model = GBMModel)
lf <- lift(res)
plot(lf)

50 MDAModel

LMModel Linear Models

Description

Fits linear models.

Usage

LMModel()

Details

Response Types: factor, matrix, numeric

Further model details can be found in the source link below.

In calls to varimp for LModel, numeric argument base may be specified for the (negative) logarith-
mic transformation of p-values [defaul: exp(1)]. Transformed p-values are automatically scaled
in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance
values, set scale = FALSE.

Value

MLModel class object.

See Also

lm, fit, resample

Examples

fit(sale_amount ~ ., data = ICHomes, model = LMModel)

MDAModel Mixture Discriminant Analysis Model

Description

Performs mixture discriminant analysis.

MDAModel 51

Usage

MDAModel(
subclasses = 3,
sub.df = NULL,
tot.df = NULL,
dimension = sum(subclasses) - 1,
eps = .Machine$double.eps,
iter = 5,
method = .(mda::polyreg),
trace = FALSE,
...

)

Arguments

subclasses numeric value or vector of subclasses per class.

sub.df effective degrees of freedom of the centroids per class if subclass centroid shrink-
age is performed.

tot.df specification of the total degrees of freedom as an alternative to sub.df.

dimension dimension of the discriminant subspace to use for prediction.

eps numeric threshold for automatically truncating the dimension.

iter limit on the total number of iterations.

method regression function used in optimal scaling. The default of linear regression is
provided by polyreg from the mda package. For penalized mixture discrimi-
nant models, gen.ridge is appropriate. Other possibilities are mars for multi-
variate adaptive regression splines and bruto for adaptive backfitting of additive
splines. Use the . operator to quote specified functions.

trace logical indicating whether iteration information is printed.

... additional arguments to mda.start and method.

Details

Response Types: factor

Automatic Tuning of Grid Parameters: subclasses

The predict function for this model additionally accepts the following argument.

prior prior class membership probabilities for prediction data if different from the training set.

Default values for the NULL arguments and further model details can be found in the source links
below.

Value

MLModel class object.

52 metricinfo

See Also

mda, predict.mda, fit, resample

Examples

Requires prior installation of suggested package mda to run

fit(Species ~ ., data = iris, model = MDAModel)

metricinfo Display Performance Metric Information

Description

Display information about metrics provided by the MachineShop package.

Usage

metricinfo(...)

Arguments

... metric functions or function names; observed responses; observed and predicted
responses; confusion or resample results for which to display information. If
none are specified, information is returned on all available metrics by default.

Value

List of named metric elements each containing the following components:

label character descriptor for the metric.

maximize logical indicating whether higher values of the metric correspond to better predictive
performance.

arguments closure with the argument names and corresponding default values of the metric func-
tion.

response_types data frame of the observed and predicted response variable types supported by the
metric.

metrics 53

Examples

All metrics
metricinfo()

Metrics by observed and predicted response types
names(metricinfo(factor(0)))
names(metricinfo(factor(0), factor(0)))
names(metricinfo(factor(0), matrix(0)))
names(metricinfo(factor(0), numeric(0)))

Metric-specific information
metricinfo(auc)

metrics Performance Metrics

Description

Compute measures of agreement between observed and predicted responses.

Usage

accuracy(
observed,
predicted = NULL,
cutoff = MachineShop::settings("cutoff"),
...

)

auc(
observed,
predicted = NULL,
metrics = c(MachineShop::tpr, MachineShop::fpr),
stat = MachineShop::settings("stat.Curve"),
...

)

brier(observed, predicted = NULL, ...)

cindex(observed, predicted = NULL, ...)

cross_entropy(observed, predicted = NULL, ...)

f_score(
observed,
predicted = NULL,

54 metrics

cutoff = MachineShop::settings("cutoff"),
beta = 1,
...

)

fnr(observed, predicted = NULL, cutoff = MachineShop::settings("cutoff"), ...)

fpr(observed, predicted = NULL, cutoff = MachineShop::settings("cutoff"), ...)

kappa2(
observed,
predicted = NULL,
cutoff = MachineShop::settings("cutoff"),
...

)

npv(observed, predicted = NULL, cutoff = MachineShop::settings("cutoff"), ...)

ppv(observed, predicted = NULL, cutoff = MachineShop::settings("cutoff"), ...)

pr_auc(observed, predicted = NULL, ...)

precision(
observed,
predicted = NULL,
cutoff = MachineShop::settings("cutoff"),
...

)

recall(
observed,
predicted = NULL,
cutoff = MachineShop::settings("cutoff"),
...

)

roc_auc(observed, predicted = NULL, ...)

roc_index(
observed,
predicted = NULL,
cutoff = MachineShop::settings("cutoff"),
f = function(sensitivity, specificity) (sensitivity + specificity)/2,
...

)

rpp(observed, predicted = NULL, cutoff = MachineShop::settings("cutoff"), ...)

metrics 55

sensitivity(
observed,
predicted = NULL,
cutoff = MachineShop::settings("cutoff"),
...

)

specificity(
observed,
predicted = NULL,
cutoff = MachineShop::settings("cutoff"),
...

)

tnr(observed, predicted = NULL, cutoff = MachineShop::settings("cutoff"), ...)

tpr(observed, predicted = NULL, cutoff = MachineShop::settings("cutoff"), ...)

weighted_kappa2(observed, predicted = NULL, power = 1, ...)

gini(observed, predicted = NULL, ...)

mae(observed, predicted = NULL, ...)

mse(observed, predicted = NULL, ...)

msle(observed, predicted = NULL, ...)

r2(observed, predicted = NULL, dist = NULL, ...)

rmse(observed, predicted = NULL, ...)

rmsle(observed, predicted = NULL, ...)

Arguments

observed observed responses; or confusion, performance curve, or resample result con-
taining observed and predicted responses.

predicted predicted responses if not contained in observed.
cutoff numeric (0, 1) threshold above which binary factor probabilities are classified as

events and below which survival probabilities are classified.
... arguments passed to or from other methods.
metrics list of two performance metrics for the calculation [default: ROC metrics].
stat function or character string naming a function to compute a summary statistic

at each cutoff value of resampled metrics in performance curves, or NULL for
resample-specific metrics.

beta relative importance of recall to precision in the calculation of f_score [default:
F1 score].

56 MLControl

f function to calculate a desired sensitivity-specificity tradeoff.

power power to which positional distances of off-diagonals from the main diagonal in
confusion matrices are raised to calculate weighted_kappa2.

dist character string specifying a distribution with which to estimate the survival
mean in the total sum of square component of r2. Possible values are "empirical"
for the Kaplan-Meier estimator, "exponential", "extreme", "gaussian", "loggaussian",
"logistic", "loglogistic", "lognormal", "rayleigh", "t", or "weibull"
(default).

See Also

metricinfo, performance

MLControl Resampling Controls

Description

Structures to define and control sampling methods for estimating predictive performance of models
in the MachineShop package.

Usage

BootControl(samples = 25, ...)

BootOptimismControl(samples = 25, ...)

CVControl(folds = 10, repeats = 1, ...)

CVOptimismControl(folds = 10, repeats = 1, ...)

OOBControl(samples = 25, ...)

SplitControl(prop = 2/3, ...)

TrainControl(...)

MLControl(
times = NULL,
dist = NULL,
method = NULL,
seed = sample(.Machine$integer.max, 1),
...

)

MLControl 57

Arguments

samples number of bootstrap samples.

... arguments passed to MLControl.

folds number of cross-validation folds (K).

repeats number of repeats of the K-fold partitioning.

prop proportion of cases to include in the training set (0 < prop < 1).
times, dist, method

arguments passed to predict.

seed integer to set the seed at the start of resampling.

Details

BootControl constructs an MLControl object for simple bootstrap resampling in which models are
fit with bootstrap resampled training sets and used to predict the full data set (Efron and Tibshirani
1993).

BootOptimismControl constructs an MLControl object for optimism-corrected bootstrap resam-
pling (Efron and Gong 1983, Harrell et al. 1996).

CVControl constructs an MLControl object for repeated K-fold cross-validation (Kohavi 1995).
In this procedure, the full data set is repeatedly partitioned into K-folds. Within a partitioning,
prediction is performed on each of the K folds with models fit on all remaining folds.

CVOptimismControl constructs an MLControl object for optimism-corrected cross-validation re-
sampling (Davison and Hinkley 1997, eq. 6.48).

OOBControl constructs an MLControl object for out-of-bootstrap resampling in which models are
fit with bootstrap resampled training sets and used to predict the unsampled cases.

SplitControl constructs an MLControl object for splitting data into a seperate trianing and test set
(Hastie et al. 2009).

TrainControl constructs an MLControl object for training and performance evaluation to be per-
formed on the same training set (Efron 1986).

The base MLControl constructor initializes a set of control parameters that are common to all re-
sampling methods.

Value

MLControl class object.

References

Efron B and Tibshirani RJ (1993). An Introduction to the Bootstrap. Monographs on Statistics and
Applied Probability 57. Boca Raton, Florida, USA: Chapman & Hall/CRC.

Efron B and Gong G (1983). A leisurely look at the bootstrap, the jackknife, and cross-validation.
The American Statistician, 37 (1): 36-48.

Harrell FE, Lee KL, and Mark DB (1996). Multivariable prognostic models: issues in developing
models, evaluating assumptions and adequacy, and measuring and reducing errors. Statistics in
Medicine, 15 (4): 361-387.

58 MLMetric

Kohavi R (1995). A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model
Selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence -
Volume 2, 1137-43. IJCAI’95. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Davison AC and Hinkley DV (1997). Bootstrap Methods and Their Application. New York, NY,
USA: Cambridge University Press.

Hastie T, Tibshirani R, and Friedman J (2009). The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Second Edition. Springer Series in Statistics. New York, NY, USA:
Springer.

Efron B (1986). How biased is the apparent error rate of a prediction rule? Journal of the American
Statistical Association, 81 (394): 461-70.

See Also

resample, SelectedInput, SelectedModel, TunedInput, TunedModel

Examples

Bootstrapping with 100 samples
BootControl(samples = 100)

Optimism-corrected bootstrapping with 100 samples
BootOptimismControl(samples = 100)

Cross-validation with 5 repeats of 10 folds
CVControl(folds = 10, repeats = 5)

Optimism-corrected cross-validation with 5 repeats of 10 folds
CVOptimismControl(folds = 10, repeats = 5)

Out-of-bootstrap validation with 100 samples
OOBControl(samples = 100)

Split sample validation with 2/3 training and 1/3 testing
SplitControl(prop = 2/3)

Training set evaluation
TrainControl()

MLMetric MLMetric Class Constructor

Description

Create a performance metric for use with the MachineShop package.

MLModel 59

Usage

MLMetric(object, name = "MLMetric", label = name, maximize = TRUE)

MLMetric(object) <- value

Arguments

object function to compute the metric, defined to accept observed and predicted as
the first two arguments and with an ellipsis (...) to accommodate others.

name character name of the object to which the metric is assigned.

label optional character descriptor for the model.

maximize logical indicating whether higher values of the metric correspond to better pre-
dictive performance.

value list of arguments to pass to the MLMetric constructor.

Value

MLMetric class object.

See Also

metrics

Examples

f2_score <- function(observed, predicted, ...) {
f_score(observed, predicted, beta = 2, ...)

}

MLMetric(f2_score) <- list(name = "f2_score",
label = "F Score (beta = 2)",
maximize = TRUE)

MLModel MLModel Class Constructor

Description

Create a model for use with the MachineShop package.

60 MLModel

Usage

MLModel(
name = "MLModel",
label = name,
packages = character(),
response_types = character(),
predictor_encoding = c(NA, "model.matrix", "terms"),
params = list(),
gridinfo = tibble::tibble(param = character(), values = list(), regular = logical()),
fit = function(formula, data, weights, ...) stop("no fit function"),
predict = function(object, newdata, times, ...) stop("no predict function"),
varimp = function(object, ...) NULL,
...

)

Arguments

name character name of the object to which the model is assigned.

label optional character descriptor for the model.

packages character vector of packages required to use the model.

response_types character vector of response variable types to which the model can be fit. Sup-
ported types are "binary", = "BinomialVariate", "DiscreteVariate", "factor",
"matrix", "NegBinomialVariate", "numeric", "ordered", "PoissonVariate",
and "Surv".

predictor_encoding

character string indicating whether the model is fit with predictor variables en-
coded as a "model.matrix", a data.frame containing the originally specified
model "terms", or unspecified (default).

params list of user-specified model parameters to be passed to the fit function.

gridinfo tibble of information for construction of tuning grids consisting of a character
column param with the names of parameters in the grid, a list column values
with functions to generate grid points for the corresponding parameters, and
an optional logical column regular indicating which parameters to include by
default in regular grids. Values functions may optionally include arguments n
and data for the number of grid points to generate and a ModelFrame of the
model fit data and formula, respectively; and must include an ellipsis (...).

fit model fitting function whose arguments are a formula, a ModelFrame named
data, case weights, and an ellipsis.

predict model prediction function whose arguments are the object returned by fit, a
ModelFrame named newdata of predictor variables, optional vector of times at
which to predict survival, and an ellipsis.

varimp variable importance function whose arguments are the object returned by fit,
optional arguments passed from calls to varimp, and an ellipsis.

... arguments passed from other methods.

MLModel 61

Details

If supplied, the grid function should return a list whose elements are named after and contain values
of parameters to include in a tuning grid to be constructed automatically by the package.

Argument data in the fit function may be converted to a data frame with the as.data.frame
function as needed. The function should return the object resulting from the model fit.

Values returned by the predict functions should be formatted according to the response variable
types below.

factor vector or column matrix of probabilities for the second level of binary factors or a matrix
whose columns contain the probabilities for factors with more than two levels.

matrix matrix of predicted responses.

numeric vector or column matrix of predicted responses.

Surv matrix whose columns contain survival probabilities at times if supplied or a vector of pre-
dicted survival means otherwise.

The varimp function should return a vector of importance values named after the predictor variables
or a matrix or data frame whose rows are named after the predictors.

Value

MLModel class object.

See Also

models, fit, resample

Examples

Logistic regression model
LogisticModel <- MLModel(

name = "LogisticModel",
response_types = "binary",
fit = function(formula, data, weights, ...) {
glm(formula, data = data, weights = weights, family = binomial, ...)

},
predict = function(object, newdata, ...) {

predict(object, newdata = newdata, type = "response")
},
varimp = function(object, ...) {

pchisq(coef(object)^2 / diag(vcov(object)), 1)
}

)

data(Pima.tr, package = "MASS")
res <- resample(type ~ ., data = Pima.tr, model = LogisticModel)
summary(res)

62 ModeledInput

ModeledInput ModeledInput Classes

Description

Class for storing a model input and specification pair for MachineShop model fitting.

Usage

ModeledInput(x, ...)

S3 method for class 'formula'
ModeledInput(x, data, model, ...)

S3 method for class 'matrix'
ModeledInput(x, y, model, ...)

S3 method for class 'ModelFrame'
ModeledInput(x, model, ...)

S3 method for class 'recipe'
ModeledInput(x, model, ...)

S3 method for class 'MLModel'
ModeledInput(x, ...)

S3 method for class 'MLModelFunction'
ModeledInput(x, ...)

Arguments

x input specifying a relationship between model predictor and response variables.
Alternatively, a model function or call may be given first followed by the input
specification.

... arguments passed to other methods.

data data frame or an object that can be converted to one.

model model function, function name, or call.

y response variable.

Value

ModeledFrame or ModeledRecipe class object that inherits from ModelFrame or recipe.

See Also

fit, resample, SelectedInput

ModelFrame 63

Examples

Modeled model frame
mod_mf <- ModeledInput(sale_amount ~ ., data = ICHomes, model = GLMModel)
fit(mod_mf)

Modeled recipe
library(recipes)

rec <- recipe(sale_amount ~ ., data = ICHomes)
mod_rec <- ModeledInput(rec, model = GLMModel)
fit(mod_rec)

ModelFrame ModelFrame Class

Description

Class for storing data, formulas, and other attributes for MachineShop model fitting.

Usage

ModelFrame(x, ...)

S3 method for class 'formula'
ModelFrame(x, data, na.rm = TRUE, weights = NULL, strata = NULL, ...)

S3 method for class 'matrix'
ModelFrame(
x,
y = NULL,
na.rm = TRUE,
offsets = NULL,
weights = NULL,
strata = NULL,
...

)

Arguments

x model formula or matrix of predictor variables.

... arguments passed to other methods.

data data frame or an object that can be converted to one.

na.rm logical indicating whether to remove cases with NA values for any of the model
variables.

weights vector of case weights [default: equal].

64 modelinfo

strata vector of resampling stratification levels [default: none].

y response variable.

offsets numeric vector, matrix, or data frame of values to be added with a fixed coeffi-
cient of 1 to linear predictors in compatible regression models.

Value

ModelFrame class object that inherits from data.frame.

See Also

fit, resample, response, SelectedInput

Examples

Requires prior installation of suggested package gbm to run

mf <- ModelFrame(ncases / (ncases + ncontrols) ~ agegp + tobgp + alcgp,
data = esoph, weights = with(esoph, ncases + ncontrols))

gbm_fit <- fit(mf, model = GBMModel)
varimp(gbm_fit)

modelinfo Display Model Information

Description

Display information about models supplied by the MachineShop package.

Usage

modelinfo(...)

Arguments

... model functions, function names, or calls; observed responses for which to dis-
play information. If none are specified, information is returned on all available
models by default.

models 65

Value

List of named model elements each containing the following components:

label character descriptor for the model.

packages character vector of source packages required to use the model. These need only be
installed with the install.packages function or by equivalent means; but need not be loaded
with, for example, the library function.

response_types character vector of response variable types supported by the model.

arguments closure with the argument names and corresponding default values of the model func-
tion.

grid logical indicating whether automatic generation of tuning parameter grids is implemented for
the model.

varimp logical indicating whether variable importance is defined for the model.

Examples

All models
modelinfo()

Models by response types
names(modelinfo(factor(0)))
names(modelinfo(factor(0), numeric(0)))

Model-specific information
modelinfo(GBMModel)

models Models

Description

Model constructor functions supplied by MachineShop are summarized in the table below accord-
ing to the types of response variables with which each can be used.

Function Categorical Continuous Survival
AdaBagModel f
AdaBoostModel f
BARTModel f n S
BARTMachineModel b n
BlackBoostModel b n S
C50Model f
CForestModel f n S
CoxModel S
CoxStepAICModel S
EarthModel f n

66 models

FDAModel f
GAMBoostModel b n S
GBMModel f n S
GLMBoostModel b n S
GLMModel f m,n
GLMStepAICModel b n
GLMNetModel f m,n S
KNNModel f,o n
LARSModel n
LDAModel f
LMModel f m,n
MDAModel f
NaiveBayesModel f
NNetModel f n
PDAModel f
PLSModel f n
POLRModel o
QDAModel f
RandomForestModel f n
RangerModel f n S
RFSRCModel f m,n S
RFSRCFastModel f m,n S
RPartModel f n S
SurvRegModel S
SurvRegStepAICModel S
SVMModel f n
SVMANOVAModel f n
SVMBesselModel f n
SVMLaplaceModel f n
SVMLinearModel f n
SVMPolyModel f n
SVMRadialModel f n
SVMSplineModel f n
SVMTanhModel f n
TreeModel f n
XGBModel f n S
XGBDARTModel f n S
XGBLinearModel f n S
XGBTreeModel f n S

Categorical: b = binary, f = factor, o = ordered
Continuous: m = matrix, n = numeric
Survival: S = Surv

Models may be combined, tuned, or selected with the following meta-model functions.

StackedModel Stacked regression

NaiveBayesModel 67

SuperModel Super learner
SelectedModel Model selection from a candidate set
TunedModel Model tuning over a parameter grid

See Also

modelinfo, fit, resample

NaiveBayesModel Naive Bayes Classifier Model

Description

Computes the conditional a-posterior probabilities of a categorical class variable given independent
predictor variables using Bayes rule.

Usage

NaiveBayesModel(laplace = 0)

Arguments

laplace positive numeric controlling Laplace smoothing.

Details

Response Types: factor

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

naiveBayes, fit, resample

Examples

Requires prior installation of suggested package e1071 to run

fit(Species ~ ., data = iris, model = NaiveBayesModel)

68 NNetModel

NNetModel Neural Network Model

Description

Fit single-hidden-layer neural network, possibly with skip-layer connections.

Usage

NNetModel(
size = 1,
linout = NULL,
entropy = NULL,
softmax = NULL,
censored = FALSE,
skip = FALSE,
rang = 0.7,
decay = 0,
maxit = 100,
trace = FALSE,
MaxNWts = 1000,
abstol = 1e-04,
reltol = 1e-08

)

Arguments

size number of units in the hidden layer.

linout switch for linear output units. Set automatically according to the class type of
the response variable [numeric: TRUE, other: FALSE].

entropy switch for entropy (= maximum conditional likelihood) fitting.

softmax switch for softmax (log-linear model) and maximum conditional likelihood fit-
ting.

censored a variant on softmax, in which non-zero targets mean possible classes.

skip switch to add skip-layer connections from input to output.

rang Initial random weights on [-rang, rang].

decay parameter for weight decay.

maxit maximum number of iterations.

trace switch for tracing optimization.

MaxNWts maximum allowable number of weights.

abstol stop if the fit criterion falls below abstol, indicating an essentially perfect fit.

reltol stop if the optimizer is unable to reduce the fit criterion by a factor of at least 1
-reltol.

ParameterGrid 69

Details

Response Types: factor, numeric

Automatic Tuning of Grid Parameters: size, decay

Default values for the NULL arguments and further model details can be found in the source link
below.

Value

MLModel class object.

See Also

nnet, fit, resample

Examples

fit(sale_amount ~ ., data = ICHomes, model = NNetModel)

ParameterGrid Tuning Parameters Grid

Description

Defines a tuning grid from a set of parameters.

Usage

ParameterGrid(...)

S3 method for class 'param'
ParameterGrid(..., size = 3, random = FALSE, length = NULL)

S3 method for class 'list'
ParameterGrid(x, size = 3, random = FALSE, length = NULL, ...)

S3 method for class 'parameters'
ParameterGrid(x, size = 3, random = FALSE, length = NULL, ...)

Arguments

... named param objects as defined in the dials package.

size single integer or vector of integers whose positions or names match the given
parameters and which specify the number of values to use in constructing a
regular grid if random = FALSE; ignored otherwise.

70 performance

random number of unique grid points to sample at random or FALSE for all points from
a regular grid defined by size.

length deprecated argument; use size instead.

x list of named param objects or a parameters object.

Value

ParameterGrid class object that inherits from parameters and Grid.

See Also

TunedModel

Examples

GBMModel tuning parameters
grid <- ParameterGrid(

n.trees = dials::trees(),
interaction.depth = dials::tree_depth(),
random = 5

)
TunedModel(GBMModel, grid = grid)

performance Model Performance Metrics

Description

Compute measures of model performance.

Usage

performance(x, ...)

S3 method for class 'BinomialVariate'
performance(
x,
y,
metrics = MachineShop::settings("metrics.numeric"),
na.rm = TRUE,
...

)

S3 method for class 'factor'
performance(
x,
y,

performance 71

metrics = MachineShop::settings("metrics.factor"),
cutoff = MachineShop::settings("cutoff"),
na.rm = TRUE,
...

)

S3 method for class 'matrix'
performance(
x,
y,
metrics = MachineShop::settings("metrics.matrix"),
na.rm = TRUE,
...

)

S3 method for class 'numeric'
performance(
x,
y,
metrics = MachineShop::settings("metrics.numeric"),
na.rm = TRUE,
...

)

S3 method for class 'Surv'
performance(
x,
y,
metrics = MachineShop::settings("metrics.Surv"),
cutoff = MachineShop::settings("cutoff"),
na.rm = TRUE,
...

)

S3 method for class 'ConfusionList'
performance(x, ...)

S3 method for class 'ConfusionMatrix'
performance(x, metrics = MachineShop::settings("metrics.ConfusionMatrix"), ...)

S3 method for class 'Resamples'
performance(x, ...)

Arguments

x observed responses; or confusion or resample result containing observed and
predicted responses.

... arguments passed from the Resamples method to the response type-specific

72 performance_curve

methods or from the method for ConfusionList to ConfusionMatrix.

y predicted responses if not contained in x.

metrics metric function, function name, or vector of these with which to calculate per-
formance.

na.rm logical indicating whether to remove observed or predicted responses that are
NA when calculating metrics.

cutoff numeric (0, 1) threshold above which binary factor probabilities are classified as
events and below which survival probabilities are classified.

See Also

plot, summary

Examples

Requires prior installation of suggested package gbm to run

res <- resample(Species ~ ., data = iris, model = GBMModel)
(perf <- performance(res))
summary(perf)
plot(perf)

Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)

obs <- response(gbm_fit, newdata = veteran)
pred <- predict(gbm_fit, newdata = veteran, type = "prob")
performance(obs, pred)

performance_curve Model Performance Curves

Description

Calculate curves for the analysis of tradeoffs between metrics for assessing performance in clas-
sifying binary outcomes over the range of possible cutoff probabilities. Available curves include
receiver operating characteristic (ROC) and precision recall.

performance_curve 73

Usage

performance_curve(x, ...)

Default S3 method:
performance_curve(
x,
y,
metrics = c(MachineShop::tpr, MachineShop::fpr),
na.rm = TRUE,
...

)

S3 method for class 'Resamples'
performance_curve(
x,
metrics = c(MachineShop::tpr, MachineShop::fpr),
na.rm = TRUE,
...

)

Arguments

x observed responses or resample result containing observed and predicted re-
sponses.

... arguments passed to other methods.

y predicted responses if not contained in x.

metrics list of two performance metrics for the analysis [default: ROC metrics]. Preci-
sion recall curves can be obtained with c(precision,recall).

na.rm logical indicating whether to remove observed or predicted responses that are
NA when calculating metrics.

Value

PerformanceCurve class object that inherits from data.frame.

See Also

auc, c, plot, summary

Examples

Requires prior installation of suggested package gbm to run

data(Pima.tr, package = "MASS")

res <- resample(type ~ ., data = Pima.tr, model = GBMModel)

74 plot

ROC curve
roc <- performance_curve(res)
plot(roc)
auc(roc)

plot Model Performance Plots

Description

Plot measures of model performance and predictor variable importance.

Usage

S3 method for class 'Calibration'
plot(x, type = c("line", "point"), se = FALSE, ...)

S3 method for class 'ConfusionList'
plot(x, ...)

S3 method for class 'ConfusionMatrix'
plot(x, ...)

S3 method for class 'LiftCurve'
plot(
x,
find = NULL,
diagonal = TRUE,
stat = MachineShop::settings("stat.Curve"),
...

)

S3 method for class 'MLModel'
plot(
x,
metrics = NULL,
stat = MachineShop::settings("stat.train"),
type = c("boxplot", "density", "errorbar", "line", "violin"),
...

)

S3 method for class 'PartialDependence'
plot(x, stats = NULL, ...)

S3 method for class 'Performance'

plot 75

plot(
x,
metrics = NULL,
stat = MachineShop::settings("stat.Resamples"),
type = c("boxplot", "density", "errorbar", "violin"),
...

)

S3 method for class 'PerformanceCurve'
plot(
x,
type = c("tradeoffs", "cutoffs"),
diagonal = FALSE,
stat = MachineShop::settings("stat.Curve"),
...

)

S3 method for class 'Resamples'
plot(
x,
metrics = NULL,
stat = MachineShop::settings("stat.Resamples"),
type = c("boxplot", "density", "errorbar", "violin"),
...

)

S3 method for class 'VarImp'
plot(x, n = NULL, ...)

Arguments

x calibration, confusion, lift, trained model fit, partial dependence, performance,
performance curve, resample, or variable importance result.

type type of plot to construct.

se logical indicating whether to include standard error bars.

... arguments passed to other methods.

find numeric true positive rate at which to display reference lines identifying the
corresponding rates of positive predictions.

diagonal logical indicating whether to include a diagonal reference line.

stat function or character string naming a function to compute a summary statistic
on resampled metrics for trained MLModel line plots and Resamples model or-
dering. For LiftCurve and PerformanceCurve classes, plots are of resampled
metrics aggregated by the statistic if given or of resample-specific metrics if
NULL.

metrics vector of numeric indexes or character names of performance metrics to plot.

stats vector of numeric indexes or character names of partial dependence summary
statistics to plot.

76 PLSModel

n number of most important variables to include in the plot [default: all].

Examples

Requires prior installation of suggested package gbm to run

Factor response example

fo <- Species ~ .
control <- CVControl()

gbm_fit <- fit(fo, data = iris, model = GBMModel, control = control)
plot(varimp(gbm_fit))

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)
plot(gbm_res3)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
plot(res)

PLSModel Partial Least Squares Model

Description

Function to perform partial least squares regression.

Usage

PLSModel(ncomp = 1, scale = FALSE)

Arguments

ncomp number of components to include in the model.

scale logical indicating whether to scale the predictors by the sample standard devia-
tion.

Details

Response Types: factor, numeric

Automatic Tuning of Grid Parameters: ncomp

Further model details can be found in the source link below.

POLRModel 77

Value

MLModel class object.

See Also

mvr, fit, resample

Examples

Requires prior installation of suggested package pls to run

fit(sale_amount ~ ., data = ICHomes, model = PLSModel)

POLRModel Ordered Logistic or Probit Regression Model

Description

Fit a logistic or probit regression model to an ordered factor response.

Usage

POLRModel(method = c("logistic", "probit", "loglog", "cloglog", "cauchit"))

Arguments

method logistic or probit or (complementary) log-log or cauchit (corresponding to a
Cauchy latent variable).

Details

Response Types: ordered

Further model details can be found in the source link below.

In calls to varimp for POLRModel, numeric argument base may be specified for the (negative) loga-
rithmic transformation of p-values [defaul: exp(1)]. Transformed p-values are automatically scaled
in the calculation of variable importance to range from 0 to 100. To obtain unscaled importance val-
ues, set scale = FALSE.

Value

MLModel class object.

See Also

polr, fit, resample

78 predict

Examples

data(Boston, package = "MASS")

df <- within(Boston,
medv <- cut(medv,

breaks = c(0, 10, 15, 20, 25, 50),
ordered = TRUE))

fit(medv ~ ., data = df, model = POLRModel)

predict Model Prediction

Description

Predict outcomes with a fitted model.

Usage

S3 method for class 'MLModelFit'
predict(
object,
newdata = NULL,
times = NULL,
type = c("response", "prob"),
cutoff = MachineShop::settings("cutoff"),
dist = NULL,
method = NULL,
...

)

Arguments

object model fit result.

newdata optional data frame with which to obtain predictions. If not specified, the train-
ing data will be used by default.

times numeric vector of follow-up times at which to predict survival events/probabilities
or NULL for predicted survival means.

type specifies prediction on the original outcome scale ("response") or on a proba-
bility distribution scale ("prob").

cutoff numeric (0, 1) threshold above which binary factor probabilities are classified as
events and below which survival probabilities are classified.

dist character string specifying distributional approximations to estimated survival
curves. Possible values are "empirical", "exponential", "rayleigh", or
"weibull"; with defaults of "empirical" for predicted survival events/probabilities
and "weibull" for predicted survival means.

print 79

method character string specifying the empirical method of estimating baseline survival
curves for Cox proportional hazards-based models. Choices are "breslow",
"efron" (default), or "fleming-harrington".

... arguments passed to model-specific prediction functions.

See Also

confusion, performance, metrics

Examples

Requires prior installation of suggested package gbm to run

Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
predict(gbm_fit, newdata = veteran, times = c(90, 180, 360), type = "prob")

print Print MachineShop Objects

Description

Print methods for objects defined in the MachineShop package.

Usage

S3 method for class 'BinomialVariate'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'Calibration'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'ListOf'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'MLModel'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'ModelFrame'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'ModeledInput'
print(x, n = MachineShop::settings("max.print"), ...)

80 QDAModel

S3 method for class 'Performance'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'PerformanceCurve'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'RecipeGrid'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'Resamples'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'SelectedInput'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'SurvMatrix'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'TrainBit'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'TunedInput'
print(x, n = MachineShop::settings("max.print"), ...)

S3 method for class 'VarImp'
print(x, n = MachineShop::settings("max.print"), ...)

Arguments

x object to print.

n integer number of models or data frame rows to show.

... arguments passed to other methods.

QDAModel Quadratic Discriminant Analysis Model

Description

Performs quadratic discriminant analysis.

Usage

QDAModel(
prior = NULL,
method = c("moment", "mle", "mve", "t"),

RandomForestModel 81

nu = 5,
use = c("plug-in", "predictive", "debiased", "looCV")

)

Arguments

prior prior probabilities of class membership if specified or the class proportions in
the training set otherwise.

method type of mean and variance estimator.

nu degrees of freedom for method = "t".

use type of parameter estimation to use for prediction.

Details

Response Types: factor

The predict function for this model additionally accepts the following argument.

prior prior class membership probabilities for prediction data if different from the training set.

Default values for the NULL arguments and further model details can be found in the source links
below.

Value

MLModel class object.

See Also

qda, predict.qda, fit, resample

Examples

fit(Species ~ ., data = iris, model = QDAModel)

RandomForestModel Random Forest Model

Description

Implementation of Breiman’s random forest algorithm (based on Breiman and Cutler’s original
Fortran code) for classification and regression.

82 RandomForestModel

Usage

RandomForestModel(
ntree = 500,
mtry = .(if (is.factor(y)) floor(sqrt(nvars)) else max(floor(nvars/3), 1)),
replace = TRUE,
nodesize = .(if (is.factor(y)) 1 else 5),
maxnodes = NULL

)

Arguments

ntree number of trees to grow.

mtry number of variables randomly sampled as candidates at each split.

replace should sampling of cases be done with or without replacement?

nodesize minimum size of terminal nodes.

maxnodes maximum number of terminal nodes trees in the forest can have.

Details

Response Types: factor, numeric

Automatic Tuning of Grid Parameters: mtry, nodesize*

* included only in randomly sampled grid points

Default values for the NULL arguments and further model details can be found in the source link
below.

Value

MLModel class object.

See Also

randomForest, fit, resample

Examples

Requires prior installation of suggested package randomForest to run

fit(sale_amount ~ ., data = ICHomes, model = RandomForestModel)

RangerModel 83

RangerModel Fast Random Forest Model

Description

Fast implementation of random forests or recursive partitioning.

Usage

RangerModel(
num.trees = 500,
mtry = NULL,
importance = c("impurity", "impurity_corrected", "permutation"),
min.node.size = NULL,
replace = TRUE,
sample.fraction = ifelse(replace, 1, 0.632),
splitrule = NULL,
num.random.splits = 1,
alpha = 0.5,
minprop = 0.1,
split.select.weights = NULL,
always.split.variables = NULL,
respect.unordered.factors = NULL,
scale.permutation.importance = FALSE,
verbose = FALSE

)

Arguments

num.trees number of trees.

mtry number of variables to possibly split at in each node.

importance variable importance mode.

min.node.size minimum node size.

replace logical indicating whether to sample with replacement.
sample.fraction

fraction of observations to sample.

splitrule splitting rule.
num.random.splits

number of random splits to consider for each candidate splitting variable in the
"extratrees" rule.

alpha significance threshold to allow splitting in the "maxstat" rule.

minprop lower quantile of covariate distribution to be considered for splitting in the
"maxstat" rule.

84 recipe_roles

split.select.weights

numeric vector with weights between 0 and 1, representing the probability to
select variables for splitting.

always.split.variables

character vector with variable names to be always selected in addition to the
mtry variables tried for splitting.

respect.unordered.factors

handling of unordered factor covariates.
scale.permutation.importance

scale permutation importance by standard error.

verbose show computation status and estimated runtime.

Details

Response Types: factor, numeric, Surv

Automatic Tuning of Grid Parameters: mtry, min.node.size*, splitrule*

* included only in randomly sampled grid points

Default values for the NULL arguments and further model details can be found in the source link
below.

Value

MLModel class object.

See Also

ranger, fit, resample

Examples

Requires prior installation of suggested package ranger to run

fit(Species ~ ., data = iris, model = RangerModel)

recipe_roles Set Recipe Roles

Description

Add to or replace the roles of variables in a preprocessing recipe.

recipe_roles 85

Usage

role_binom(recipe, x, size)

role_case(recipe, stratum, weight, replace = FALSE)

role_pred(recipe, offset, replace = FALSE)

role_surv(recipe, time, event)

Arguments

recipe existing recipe object.

x, size number of counts and trials for the specification of a BinomialVariate out-
come.

stratum variable for stratified resampling of cases.

weight numeric variable of case weights for model fitting.

replace logical indicating whether to replace existing roles.

offset numeric variable to be added to a linear predictor, such as in a generalized linear
model, with known coefficient 1 rather than an estimated coefficient.

time, event numeric follow up time and 0-1 numeric or logical event indicator for specifica-
tion of a Surv outcome. If the event indicator is omitted, all cases are assumed
to have events.

Value

An updated recipe object.

See Also

recipe

Examples

library(survival)
library(recipes)

rec <- recipe(time + status ~ ., data = veteran) %>%
role_surv(time = time, event = status) %>%
role_case(stratum = status)

(res <- resample(rec, model = CoxModel))
summary(res)

86 resample

resample Resample Estimation of Model Performance

Description

Estimation of the predictive performance of a model estimated and evaluated on training and test
samples generated from an observed data set.

Usage

resample(x, ...)

S3 method for class 'formula'
resample(x, data, model, control = MachineShop::settings("control"), ...)

S3 method for class 'matrix'
resample(x, y, model, control = MachineShop::settings("control"), ...)

S3 method for class 'ModelFrame'
resample(x, model, control = MachineShop::settings("control"), ...)

S3 method for class 'recipe'
resample(x, model, control = MachineShop::settings("control"), ...)

S3 method for class 'MLModel'
resample(x, ...)

S3 method for class 'MLModelFunction'
resample(x, ...)

Arguments

x input specifying a relationship between model predictor and response variables.
Alternatively, a model function or call may be given first followed by the input
specification and control value.

... arguments passed to other methods.

data data frame containing observed predictors and outcomes.

model model function, function name, or call; ignored and can be omitted when resam-
pling modeled inputs.

control control function, function name, or call defining the resampling method to be
employed.

y response variable.

response 87

Details

Stratified resampling is performed for the formula method according to values of the response
variable; i.e. categorical levels for factor, continuous for numeric, and event status Surv.

User-specified stratification variables may be specified for ModelFrames upon creation with the
strata argument in its constructor. Resampling of this class is unstratified by default.

Variables in recipe specifications may be designated as case strata with the role_case function.
Resampling will be unstratified otherwise.

Value

Resamples class object.

See Also

c, metrics, performance, plot, summary

Examples

Requires prior installation of suggested package gbm to run

Factor response example

fo <- Species ~ .
control <- CVControl()

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)

summary(gbm_res1)
plot(gbm_res1)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
summary(res)
plot(res)

response Extract Response Variable

Description

Extract the response variable from an object.

88 RFSRCModel

Usage

response(object, ...)

S3 method for class 'MLModelFit'
response(object, newdata = NULL, ...)

S3 method for class 'ModelFrame'
response(object, newdata = NULL, ...)

S3 method for class 'recipe'
response(object, newdata = NULL, ...)

Arguments

object model fit result, ModelFrame, or recipe.

... arguments passed to other methods.

newdata data frame from which to extract the response variable values if given; other-
wise, object is used.

Examples

Survival response example
library(survival)

mf <- ModelFrame(Surv(time, status) ~ ., data = veteran)
response(mf)

RFSRCModel Fast Random Forest (SRC) Model

Description

Fast OpenMP computing of Breiman’s random forest for a variety of data settings including right-
censored survival, regression, and classification.

Usage

RFSRCModel(
ntree = 1000,
mtry = NULL,
nodesize = NULL,
nodedepth = NULL,
splitrule = NULL,
nsplit = 10,
block.size = NULL,
samptype = c("swor", "swr"),

RFSRCModel 89

membership = FALSE,
sampsize = ifelse(samptype == "swor", function(x) 0.632 * x, function(x) x),
nimpute = 1,
ntime = NULL,
proximity = c(FALSE, TRUE, "inbag", "oob", "all"),
distance = c(FALSE, TRUE, "inbag", "oob", "all"),
forest.wt = c(FALSE, TRUE, "inbag", "oob", "all"),
xvar.wt = NULL,
split.wt = NULL,
var.used = c(FALSE, "all.trees", "by.tree"),
split.depth = c(FALSE, "all.trees", "by.tree"),
do.trace = FALSE,
statistics = FALSE

)

RFSRCFastModel(
ntree = 500,
sampsize = function(x) min(0.632 * x, max(150, x^0.75)),
ntime = 50,
terminal.qualts = FALSE,
...

)

Arguments

ntree number of trees.

mtry number of variables randomly selected as candidates for splitting a node.

nodesize forest average number of unique cases in a terminal node.

nodedepth maximum depth to which a tree should be grown.

splitrule splitting rule (see rfsrc).

nsplit non-negative integer value for number of random splits to consider for each
candidate splitting variable.

block.size interval number of trees at which to compute the cumulative error rate.

samptype whether bootstrap sampling is with or without replacement.

membership logical indicating whether to return terminal node membership.

sampsize function specifying the bootstrap size.

nimpute number of iterations of the missing data imputation algorithm.

ntime integer number of time points to constrain ensemble calculations for survival
outcomes.

proximity whether and how to return proximity of cases as measured by the frequency of
sharing the same terminal nodes.

distance whether and how to return distance between cases as measured by the ratio of
the sum of edges from each case to the root node.

forest.wt whether and how to return the forest weight matrix.

90 RFSRCModel

xvar.wt vector of non-negative weights representing the probability of selecting a vari-
able for splitting.

split.wt vector of non-negative weights used for multiplying the split statistic for a vari-
able.

var.used whether and how to return variables used for splitting.

split.depth whether and how to return minimal depth for each variable.

do.trace number of seconds between updates to the user on approximate time to comple-
tion.

statistics logical indicating whether to return split statistics.

terminal.qualts

logical indicating whether to return terminal node membership information.

... arguments passed to RFSRCModel.

Details

Response Types: factor, matrix, numeric, Surv

Automatic Tuning of Grid Parameters: mtry, nodesize

Default values for the NULL arguments and further model details can be found in the source link
below.

In calls to varimp for RFSRCModel, argument metric may be specified as "permute" (default)
from permuting OOB cases, as "random" for permutation replaced with random assignment, or as
"anit" for cases assigned to the split opposite of the random assignments. Variable importance is
automatically scaled to range from 0 to 100. To obtain unscaled importance values, set scale =
FALSE. See example below.

Value

MLModel class object.

See Also

rfsrc, rfsrc.fast, fit, resample

Examples

Requires prior installation of suggested package randomForestSRC to run

model_fit <- fit(sale_amount ~ ., data = ICHomes, model = RFSRCModel)
varimp(model_fit, metric = "random", scale = TRUE)

RPartModel 91

RPartModel Recursive Partitioning and Regression Tree Models

Description

Fit an rpart model.

Usage

RPartModel(
minsplit = 20,
minbucket = round(minsplit/3),
cp = 0.01,
maxcompete = 4,
maxsurrogate = 5,
usesurrogate = 2,
xval = 10,
surrogatestyle = 0,
maxdepth = 30

)

Arguments

minsplit minimum number of observations that must exist in a node in order for a split to
be attempted.

minbucket minimum number of observations in any terminal node.

cp complexity parameter.

maxcompete number of competitor splits retained in the output.

maxsurrogate number of surrogate splits retained in the output.

usesurrogate how to use surrogates in the splitting process.

xval number of cross-validations.

surrogatestyle controls the selection of a best surrogate.

maxdepth maximum depth of any node of the final tree, with the root node counted as
depth 0.

Details

Response Types: factor, numeric, Surv

Automatic Tuning of Grid Parameters: cp

Further model details can be found in the source link below.

Value

MLModel class object.

92 SelectedInput

See Also

rpart, fit, resample

Examples

Requires prior installation of suggested packages rpart and partykit to run

fit(Species ~ ., data = iris, model = RPartModel)

SelectedInput Selected Model Inputs

Description

Formula, design matrix, model frame, or recipe selection from a candidate set.

Usage

SelectedInput(...)

S3 method for class 'formula'
SelectedInput(
...,
data,
control = MachineShop::settings("control"),
metrics = NULL,
stat = MachineShop::settings("stat.train"),
cutoff = MachineShop::settings("cutoff")

)

S3 method for class 'matrix'
SelectedInput(
...,
y,
control = MachineShop::settings("control"),
metrics = NULL,
stat = MachineShop::settings("stat.train"),
cutoff = MachineShop::settings("cutoff")

)

S3 method for class 'ModelFrame'
SelectedInput(
...,
control = MachineShop::settings("control"),

SelectedInput 93

metrics = NULL,
stat = MachineShop::settings("stat.train"),
cutoff = MachineShop::settings("cutoff")

)

S3 method for class 'recipe'
SelectedInput(
...,
control = MachineShop::settings("control"),
metrics = NULL,
stat = MachineShop::settings("stat.train"),
cutoff = MachineShop::settings("cutoff")

)

S3 method for class 'list'
SelectedInput(x, ...)

Arguments

... inputs specifying relationships between model predictor and response variables.
Supplied inputs must all be of the same type and may be named or unnamed.

data data frame or an object that can be converted to one.

control control function, function name, or call defining the resampling method to be
employed.

metrics metric function, function name, or vector of these with which to calculate per-
formance. If not specified, default metrics defined in the performance functions
are used. Recipe selection is based on the first calculated metric.

stat function or character string naming a function to compute a summary statistic
on resampled metric values for recipe selection.

cutoff argument passed to the metrics functions.

y response variable.

x list of inputs followed by arguments passed to their method function.

Value

SelectedModelFrame or SelectedModelRecipe class object that inherits from SelectedInput
and ModelFrame or recipe.

See Also

fit, resample

Examples

Selected model frame
sel_mf <- SelectedInput(

sale_amount ~ sale_year + built + style + construction,
sale_amount ~ sale_year + base_size + bedrooms + basement,

94 SelectedModel

data = ICHomes
)

fit(sel_mf, model = GLMModel)

Selected recipe
library(recipes)
data(Boston, package = "MASS")

rec1 <- recipe(medv ~ crim + zn + indus + chas + nox + rm, data = Boston)
rec2 <- recipe(medv ~ chas + nox + rm + age + dis + rad + tax, data = Boston)
sel_rec <- SelectedInput(rec1, rec2)

fit(sel_rec, model = GLMModel)

SelectedModel Selected Model

Description

Model selection from a candidate set.

Usage

SelectedModel(
...,
control = MachineShop::settings("control"),
metrics = NULL,
stat = MachineShop::settings("stat.train"),
cutoff = MachineShop::settings("cutoff")

)

Arguments

... model functions, function names, calls, or vectors of these to serve as the candi-
date set from which to select, such as that returned by expand_model.

control control function, function name, or call defining the resampling method to be
employed.

metrics metric function, function name, or vector of these with which to calculate per-
formance. If not specified, default metrics defined in the performance functions
are used. Model selection is based on the first calculated metric.

stat function or character string naming a function to compute a summary statistic
on resampled metric values for model selection.

cutoff argument passed to the metrics functions.

settings 95

Details

Response Types: factor, numeric, ordered, Surv

Value

SelectedModel class object that inherits from MLModel.

See Also

fit, resample

Examples

Requires prior installation of suggested package gbm and glmnet to run

model_fit <- fit(sale_amount ~ ., data = ICHomes,
model = SelectedModel(GBMModel, GLMNetModel, SVMRadialModel))

(selected_model <- as.MLModel(model_fit))
summary(selected_model)

settings MachineShop Settings

Description

Allow the user to view or change global settings which affect default behaviors of functions in the
MachineShop package.

Usage

settings(...)

Arguments

... character names of settings to view, name = value pairs giving the values of
settings to change, a vector of these, "reset" to restore all package defaults, or
no arguments to view all settings. Partial matching of setting names is supported.

Value

The setting value if only one is specified to view. Otherwise, a list of the values of specified settings
as they existed prior to any requested changes. Such a list can be passed as an argument to settings
to restore their values.

96 settings

Settings

control function, function name, or call defining a default resampling method [default: "CVControl"].

cutoff numeric (0, 1) threshold above which binary factor probabilities are classified as events
and below which survival probabilities are classified [default: 0.5].

dist.Surv character string specifying distributional approximations to estimated survival curves
for predicting survival means. Choices are "empirical" for the Kaplan-Meier estimator,
"exponential", or "weibull" (default).

dist.SurvProbs character string specifying distributional approximations to estimated survival
curves for predicting survival events/probabilities. Choices are "empirical" (default) for the
Kaplan-Meier estimator, "exponential", or "weibull".

grid size argument to Grid indicating the number of parameter-specific values to generate auto-
matically for tuning of models that have pre-defined grids or a Grid function, function name,
or call [default: 3].

max.print number of models or data rows to show with print methods or Inf to show all [default:
10].

method.EmpiricalSurv character string specifying the empirical method of estimating baseline
survival curves for Cox proportional hazards-based models. Choices are "breslow", "efron"
(default), or "fleming-harrington".

metrics.ConfusionMatrix function, function name, or vector of these with which to calculate
performance metrics for confusion matrices [default: c(Accuracy = "accuracy",Kappa =
"kappa2",`Weighted Kappa` = "weighted_kappa2",Sensitivity = "sensitivity",Specificity
= "specificity")].

metrics.factor function, function name, or vector of these with which to calculate performance
metrics for factor responses [default: c(Brier = "brier",Accuracy = "accuracy",Kappa =
"kappa2",`Weighted Kappa` = "weighted_kappa2",`ROC AUC` = "roc_auc",Sensitivity
= "sensitivity",Specificity = "specificity")].

metrics.matrix function, function name, or vector of these with which to calculate performance
metrics for matrix responses [default: c(RMSE = "rmse",R2 = "r2",MAE = "mae")].

metrics.numeric function, function name, or vector of these with which to calculate performance
metrics for numeric responses [default: c(RMSE = "rmse",R2 = "r2",MAE = "mae")].

metrics.Surv function, function name, or vector of these with which to calculate performance
metrics for survival responses [default: c(`C-Index` = "cindex",Brier = "brier",`ROC
AUC` = "roc_auc",Accuracy = "accuracy")].

progress.resample logical indicating whether to display a progress bar during resampling [de-
fault: TRUE]. Displayed only if a computing cluster is not registered or is registered with the
doSNOW package.

require names of installed packages to load during parallel execution of resampling algorithms
[default: c("MachineShop","survival","recipes")].

reset character names of settings to reset to their default values.

RHS.formula non-modifiable character vector of operators and functions allowed in traditional
formula specifications.

stat.Curve function or character string naming a function to compute one summary statistic at
each cutoff value of resampled metrics in performance curves, or NULL for resample-specific
metrics [default: "base::mean"].

StackedModel 97

stat.Resamples function or character string naming a function to compute one summary statistic
to control the ordering of models in plots [default: "base::mean"].

stat.train function or character string naming a function to compute one summary statistic on
resampled performance metrics for input selection or tuning or for model selection or tuning
[default: "base::mean"].

stats.PartialDependence function, function name, or vector of these with which to compute
partial dependence summary statistics [default: c(Mean = "base::mean")].

stats.Resamples function, function name, or vector of these with which to compute summary
statistics on resampled performance metrics [default: c(Mean = "base::mean",Median = "stats::median",SD
= "stats::sd",Min = "base::min",Max = "base::max")].

verbose.resample logical indicating whether to enable verbose messages when resampling [de-
fault: FALSE].

Examples

View all current settings
settings()

Change settings
presets <- settings(control = "BootControl", grid = 10)

View one setting
settings("control")

View multiple settings
settings("control", "grid")

Restore the previous settings
settings(presets)

StackedModel Stacked Regression Model

Description

Fit a stacked regression model from multiple base learners.

Usage

StackedModel(..., control = MachineShop::settings("control"), weights = NULL)

Arguments

... model functions, function names, calls, or vector of these to serve as base learn-
ers.

control control function, function name, or call defining the resampling method to be
employed for the estimation of base learner weights.

weights optional fixed base learner weights.

98 step_kmeans

Details

Response Types: factor, numeric, ordered, Surv

Value

StackedModel class object that inherits from MLModel.

References

Breiman, L. (1996) Stacked Regression. Machine Learning, 24, 49–64.

See Also

fit, resample

Examples

Requires prior installation of suggested packages gbm and glmnet to run

model <- StackedModel(GBMModel, SVMRadialModel, GLMNetModel(lambda = 0.01))
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit, newdata = ICHomes)

step_kmeans K-Means Clustering Variable Reduction

Description

Creates a specification of a recipe step that will convert numeric variables into one or more by
averaging within k-means clusters.

Usage

step_kmeans(
recipe,
...,
k = 5,
center = TRUE,
scale = TRUE,
algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"),
max_iter = 10,
num_start = 1,
replace = TRUE,
prefix = "KMeans",
role = "predictor",

step_kmeans 99

skip = FALSE,
id = recipes::rand_id("kmeans")

)

S3 method for class 'step_kmeans'
tidy(x, ...)

tunable.step_kmeans(x, ...)

Arguments

recipe recipe object to which the step will be added.

... one or more selector functions to choose which variables will be used to compute
the components. See selections for more details. These are not currently used
by the tidy method.

k number of k-means clusterings of the variables. The value of k is constrained to
be between 1 and one less than the number of original variables.

center, scale logicals indicating whether to mean center and standard deviation scale the orig-
inal variables prior to deriving components, or functions or names of functions
for the centering and scaling.

algorithm character string specifying the clustering algorithm to use.

max_iter maximum number of algorithm iterations allowed.

num_start number of random cluster centers generated for starting the Hartigan-Wong al-
gorithm.

replace logical indicating whether to replace the original variables.

prefix character string prefix added to a sequence of zero-padded integers to generate
names for the resulting new variables.

role analysis role that added step variables should be assigned. By default, they are
designated as model predictors.

skip logical indicating whether to skip the step when the recipe is baked. While all
operations are baked when prep is run, some operations may not be applicable
to new data (e.g. processing outcome variables). Care should be taken when
using skip = TRUE as it may affect the computations for subsequent operations.

id unique character string to identify the step.

x step_kmeans object.

Details

K-means clustering partitions variables into k groups such that the sum of squares between the
variables and their assigned cluster means is minimized. Variables within each cluster are then
averaged to derive a new set of k variables.

100 step_kmedoids

Value

Function step_kmeans creates a new step whose class is of the same name and inherits from
step_lincomp, adds it to the sequence of existing steps (if any) in the recipe, and returns the
updated recipe. For the tidy method, a tibble with columns terms (selectors or variables selected),
cluster assignments, sqdist (squared distance from cluster centers), and name of the new variable
names.

References

Forgy EW (1965). Cluster analysis of multivariate data: efficiency vs interpretability of classifica-
tions. Biometrics 21, 768–769.

Hartigan JA and Wong MA (1979). A K-means clustering algorithm. Applied Statistics 28, 100–
108.

Lloyd SP (1957, 1982). Least squares quantization in PCM. Technical Note, Bell Laboratories.
Published in 1982 in IEEE Transactions on Information Theory 28, 128–137.

MacQueen J (1967). Some methods for classification and analysis of multivariate observations. In
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, eds L.
M. Le Cam & J. Neyman, 1, 281–297. Berkeley, CA: University of California Press.

See Also

kmeans, recipe, prep, bake

Examples

library(recipes)

rec <- recipe(rating ~ ., data = attitude)
kmeans_rec <- rec %>%

step_kmeans(all_predictors(), k = 3)
kmeans_prep <- prep(kmeans_rec, training = attitude)
kmeans_data <- bake(kmeans_prep, attitude)

pairs(kmeans_data, lower.panel = NULL)

tidy(kmeans_rec, number = 1)
tidy(kmeans_prep, number = 1)

step_kmedoids K-Medoids Clustering Variable Selection

Description

Creates a specification of a recipe step that will partition numeric variables according to k-medoids
clustering and select the cluster medoids.

step_kmedoids 101

Usage

step_kmedoids(
recipe,
...,
k = 5,
center = TRUE,
scale = TRUE,
method = c("pam", "clara"),
metric = "euclidean",
optimize = FALSE,
num_samp = 50,
samp_size = 40 + 2 * k,
replace = TRUE,
prefix = "KMedoids",
role = "predictor",
skip = FALSE,
id = recipes::rand_id("kmedoids")

)

tunable.step_kmedoids(x, ...)

Arguments

recipe recipe object to which the step will be added.
... one or more selector functions to choose which variables will be used to compute

the components. See selections for more details. These are not currently used
by the tidy method.

k number of k-medoids clusterings of the variables. The value of k is constrained
to be between 1 and one less than the number of original variables.

center, scale logicals indicating whether to mean center and median absolute deviation scale
the original variables prior to cluster partitioning, or functions or names of func-
tions for the centering and scaling; not applied to selected variables.

method character string specifying one of the clustering methods provided by the cluster
package. The clara (clustering large applications) method is an extension of
pam (partitioning around medoids) designed to handle large datasets.

metric character string specifying the distance metric for calculating dissimilarities
between observations as "euclidean", "manhattan", or "jaccard" (clara
only).

optimize logical indicator or 0:5 integer level specifying optimization for the pam cluster-
ing method.

num_samp number of sub-datasets to sample for the clara clustering method.
samp_size number of cases to include in each sub-dataset.
replace logical indicating whether to replace the original variables.
prefix if the original variables are not replaced, the selected variables are added to

the dataset with the character string prefix added to their names; otherwise, the
original variable names are retained.

102 step_kmedoids

role analysis role that added step variables should be assigned. By default, they are
designated as model predictors.

skip logical indicating whether to skip the step when the recipe is baked. While all
operations are baked when prep is run, some operations may not be applicable
to new data (e.g. processing outcome variables). Care should be taken when
using skip = TRUE as it may affect the computations for subsequent operations.

id unique character string to identify the step.
x step_kmedoids object.

Details

K-medoids clustering partitions variables into k groups such that the dissimilarity between the vari-
ables and their assigned cluster medoids is minimized. Cluster medoids are then returned as a set
of k variables.

Value

Function step_kmedoids creates a new step whose class is of the same name and inherits from
step_sbf, adds it to the sequence of existing steps (if any) in the recipe, and returns the updated
recipe. For the tidy method, a tibble with columns terms (selectors or variables selected), cluster
assignments, selected (logical indicator of selected cluster medoids), silhouette (silhouette val-
ues), and name of the selected variable names.

References

Kaufman L and Rousseeuw PJ (1990). Finding Groups in Data: An Introduction to Cluster Analy-
sis. Wiley: New York.

Reynolds A, Richards G, de la Iglesia B and Rayward-Smith V (1992). Clustering rules: a compar-
ison of partitioning and hierarchical clustering algorithms. Journal of Mathematical Modelling and
Algorithms 5, 475–504.

See Also

pam, clara, recipe, prep, bake

Examples

library(recipes)

rec <- recipe(rating ~ ., data = attitude)
kmedoids_rec <- rec %>%

step_kmedoids(all_predictors(), k = 3)
kmedoids_prep <- prep(kmedoids_rec, training = attitude)
kmedoids_data <- bake(kmedoids_prep, attitude)

pairs(kmedoids_data, lower.panel = NULL)

tidy(kmedoids_rec, number = 1)
tidy(kmedoids_prep, number = 1)

step_lincomp 103

step_lincomp Linear Components Variable Reduction

Description

Creates a specification of a recipe step that will compute one or more linear combinations of a set
of numeric variables according to a user-specified transformation matrix.

Usage

step_lincomp(
recipe,
...,
transform,
num_comp = 5,
options = list(),
center = TRUE,
scale = TRUE,
replace = TRUE,
prefix = "LinComp",
role = "predictor",
skip = FALSE,
id = recipes::rand_id("lincomp")

)

S3 method for class 'step_lincomp'
tidy(x, ...)

tunable.step_lincomp(x, ...)

Arguments

recipe recipe object to which the step will be added.

... one or more selector functions to choose which variables will be used to compute
the components. See selections for more details. These are not currently used
by the tidy method.

transform function whose first argument x is a matrix of variables with which to compute
linear combinations and second argument step is the current step. The func-
tion should return a transformation matrix or Matrix of variable weights in its
columns, or return a list with element `weights` containing the transformation
matrix and possibly with other elements to be included as attributes in output
from the tidy method.

num_comp number of components to derive. The value of num_comp will be constrained to
a minimum of 1 and maximum of the number of original variables when prep
is run.

options list of elements to be added to the step object for use in the transform function.

104 step_lincomp

center, scale logicals indicating whether to mean center and standard deviation scale the orig-
inal variables prior to deriving components, or functions or names of functions
for the centering and scaling.

replace logical indicating whether to replace the original variables.

prefix character string prefix added to a sequence of zero-padded integers to generate
names for the resulting new variables.

role analysis role that added step variables should be assigned. By default, they are
designated as model predictors.

skip logical indicating whether to skip the step when the recipe is baked. While all
operations are baked when prep is run, some operations may not be applicable
to new data (e.g. processing outcome variables). Care should be taken when
using skip = TRUE as it may affect the computations for subsequent operations.

id unique character string to identify the step.

x step_lincomp object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any).
For the tidy method, a tibble with columns terms (selectors or variables selected), weight of each
variable in the linear transformations, and name of the new variable names.

See Also

recipe, prep, bake

Examples

library(recipes)

pca_mat <- function(x, step) {
prcomp(x)$rotation[, 1:step$num_comp, drop = FALSE]

}

rec <- recipe(rating ~ ., data = attitude)
lincomp_rec <- rec %>%

step_lincomp(all_numeric(), -all_outcomes(),
transform = pca_mat, num_comp = 3, prefix = "PCA")

lincomp_prep <- prep(lincomp_rec, training = attitude)
lincomp_data <- bake(lincomp_prep, attitude)

pairs(lincomp_data, lower.panel = NULL)

tidy(lincomp_rec, number = 1)
tidy(lincomp_prep, number = 1)

step_sbf 105

step_sbf Variable Selection by Filtering

Description

Creates a specification of a recipe step that will select variables from a candidate set according to a
user-specified filtering function.

Usage

step_sbf(
recipe,
...,
filter,
multivariate = FALSE,
options = list(),
replace = TRUE,
prefix = "SBF",
role = "predictor",
skip = FALSE,
id = recipes::rand_id("sbf")

)

S3 method for class 'step_sbf'
tidy(x, ...)

Arguments

recipe recipe object to which the step will be added.

... one or more selector functions to choose which variables will be used to compute
the components. See selections for more details. These are not currently used
by the tidy method.

filter function whose first argument x is a univariate vector or a multivariate data
frame of candidate variables from which to select, second argument y is the
response variable as defined in preceding recipe steps, and third argument step
is the current step. The function should return a logical value or vector of length
equal the number of variables in x indicating whether to select the corresponding
variable, or return a list or data frame with element `selected` containing the
logical(s) and possibly with other elements of the same length to be included in
output from the tidy method.

multivariate logical indicating that candidate variables be passed to the x argument of the
filter function separately as univariate vectors if FALSE, or altogether in one
multivariate data frame if TRUE.

options list of elements to be added to the step object for use in the filter function.

replace logical indicating whether to replace the original variables.

106 step_sbf

prefix if the original variables are not replaced, the selected variables are added to
the dataset with the character string prefix added to their names; otherwise, the
original variable names are retained.

role analysis role that added step variables should be assigned. By default, they are
designated as model predictors.

skip logical indicating whether to skip the step when the recipe is baked. While all
operations are baked when prep is run, some operations may not be applicable
to new data (e.g. processing outcome variables). Care should be taken when
using skip = TRUE as it may affect the computations for subsequent operations.

id unique character string to identify the step.

x step_sbf object.

Value

An updated version of recipe with the new step added to the sequence of existing steps (if any). For
the tidy method, a tibble with columns terms (selectors or variables selected), selected (logical
indicator of selected variables), and name of the selected variable names.

See Also

recipe, prep, bake

Examples

library(recipes)

glm_filter <- function(x, y, step) {
model_fit <- glm(y ~ ., data = data.frame(y, x))
p_value <- drop1(model_fit, test = "F")[-1, "Pr(>F)"]
p_value < step$threshold

}

rec <- recipe(rating ~ ., data = attitude)
sbf_rec <- rec %>%

step_sbf(all_numeric(), -all_outcomes(),
filter = glm_filter, options = list(threshold = 0.05))

sbf_prep <- prep(sbf_rec, training = attitude)
sbf_data <- bake(sbf_prep, attitude)

pairs(sbf_data, lower.panel = NULL)

tidy(sbf_rec, number = 1)
tidy(sbf_prep, number = 1)

step_spca 107

step_spca Sparse Principal Components Analysis Variable Reduction

Description

Creates a specification of a recipe step that will derive sparse principal components from one or
more numeric variables.

Usage

step_spca(
recipe,
...,
num_comp = 5,
sparsity = 0,
num_var = NULL,
shrinkage = 1e-06,
center = TRUE,
scale = TRUE,
max_iter = 200,
tol = 0.001,
replace = TRUE,
prefix = "SPCA",
role = "predictor",
skip = FALSE,
id = recipes::rand_id("spca")

)

tunable.step_spca(x, ...)

Arguments

recipe recipe object to which the step will be added.

... one or more selector functions to choose which variables will be used to compute
the components. See selections for more details. These are not currently used
by the tidy method.

num_comp number of components to derive. The value of num_comp will be constrained to
a minimum of 1 and maximum of the number of original variables when prep
is run.

sparsity, num_var

sparsity (L1 norm) penalty for each component or number of variables with non-
zero component loadings. Larger sparsity values produce more zero loadings.
Argument sparsity is ignored if num_var is given. The argument value may
be a single number applied to all components or a vector of component-specific
numbers.

108 step_spca

shrinkage numeric shrinkage (quadratic) penalty for the components to improve condition-
ing; larger values produce more shrinkage of component loadings toward zero.

center, scale logicals indicating whether to mean center and standard deviation scale the orig-
inal variables prior to deriving components, or functions or names of functions
for the centering and scaling.

max_iter maximum number of algorithm iterations allowed.

tol numeric tolerance for the convergence criterion.

replace logical indicating whether to replace the original variables.

prefix character string prefix added to a sequence of zero-padded integers to generate
names for the resulting new variables.

role analysis role that added step variables should be assigned. By default, they are
designated as model predictors.

skip logical indicating whether to skip the step when the recipe is baked. While all
operations are baked when prep is run, some operations may not be applicable
to new data (e.g. processing outcome variables). Care should be taken when
using skip = TRUE as it may affect the computations for subsequent operations.

id unique character string to identify the step.

x step_spca object.

Details

Sparse principal components analysis (SPCA) is a variant of PCA in which the original variables
may have zero loadings in the linear combinations that form the components.

Value

Function step_spca creates a new step whose class is of the same name and inherits from step_lincomp,
adds it to the sequence of existing steps (if any) in the recipe, and returns the updated recipe. For the
tidy method, a tibble with columns terms (selectors or variables selected), weight of each variable
loading in the components, and name of the new variable names; and with attribute pev containing
the proportions of explained variation.

References

Zou H, Hastie T and Tibshirani R (2006). Sparse principal component analysis. Journal of Compu-
tational and Graphical Statistics, 15(2):265–286.

See Also

spca, recipe, prep, bake

Examples

library(recipes)

rec <- recipe(rating ~ ., data = attitude)
spca_rec <- rec %>%

summary 109

step_spca(all_predictors(), num_comp = 5, sparsity = 1)
spca_prep <- prep(spca_rec, training = attitude)
spca_data <- bake(spca_prep, attitude)

pairs(spca_data, lower.panel = NULL)

tidy(spca_rec, number = 1)
tidy(spca_prep, number = 1)

summary Model Performance Summaries

Description

Summary statistics for resampled model performance metrics.

Usage

S3 method for class 'ConfusionList'
summary(object, ...)

S3 method for class 'ConfusionMatrix'
summary(object, ...)

S3 method for class 'MLModel'
summary(
object,
stats = MachineShop::settings("stats.Resamples"),
na.rm = TRUE,
...

)

S3 method for class 'Performance'
summary(
object,
stats = MachineShop::settings("stats.Resamples"),
na.rm = TRUE,
...

)

S3 method for class 'PerformanceCurve'
summary(object, stat = MachineShop::settings("stat.Curve"), ...)

S3 method for class 'Resamples'
summary(
object,
stats = MachineShop::settings("stats.Resamples"),

110 SuperModel

na.rm = TRUE,
...

)

Arguments

object confusion, lift, trained model fit, performance, performance curve, or resample
result.

... arguments passed to other methods.

stats function, function name, or vector of these with which to compute summary
statistics.

na.rm logical indicating whether to exclude missing values.

stat function or character string naming a function to compute a summary statistic
at each cutoff value of resampled metrics in PerformanceCurve, or NULL for
resample-specific metrics.

Value

An object of summmary statistics.

Examples

Requires prior installation of suggested package gbm to run

Factor response example

fo <- Species ~ .
control <- CVControl()

gbm_res1 <- resample(fo, iris, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, iris, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, iris, GBMModel(n.trees = 100), control)
summary(gbm_res3)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
summary(res)

SuperModel Super Learner Model

Description

Fit a super learner model to predictions from multiple base learners.

SuperModel 111

Usage

SuperModel(
...,
model = GBMModel,
control = MachineShop::settings("control"),
all_vars = FALSE

)

Arguments

... model functions, function names, calls, or vector of these to serve as base learn-
ers.

model model function, function name, or call defining the super model.

control control function, function name, or call defining the resampling method to be
employed for the estimation of base learner weights.

all_vars logical indicating whether to include the original predictor variables in the super
model.

Details

Response Types: factor, numeric, ordered, Surv

Value

SuperModel class object that inherits from MLModel.

References

van der Lann, M.J., Hubbard A.E. (2007) Super Learner. Statistical Applications in Genetics and
Molecular Biology, 6(1).

See Also

fit, resample

Examples

Requires prior installation of suggested packages gbm and glmnet to run

model <- SuperModel(GBMModel, SVMRadialModel, GLMNetModel(lambda = 0.01))
model_fit <- fit(sale_amount ~ ., data = ICHomes, model = model)
predict(model_fit, newdata = ICHomes)

112 SurvRegModel

SurvMatrix SurvMatrix Class Constructors

Description

Create a matrix of survival events or probabilites.

Usage

SurvEvents(data = NA, times = NULL)

SurvProbs(data = NA, times = NULL)

Arguments

data matrix, or object that can be coerced to one, with survival events or probabilities
at points in time in the columns and cases in the rows.

times numeric vector of survival times for the columns.

Value

Object that is of the same class as the constructor name and inherits from SurvMatrix. Examples
of these are predicted survival events and probabilities returned by the predict function.

See Also

performance, metrics

SurvRegModel Parametric Survival Model

Description

Fits the accelerated failure time family of parametric survival models.

Usage

SurvRegModel(
dist = c("weibull", "exponential", "gaussian", "logistic", "lognormal",
"logloglogistic"),

scale = NULL,
parms = NULL,
...

)

SurvRegStepAICModel(

SurvRegModel 113

dist = c("weibull", "exponential", "gaussian", "logistic", "lognormal",
"logloglogistic"),

scale = NULL,
parms = NULL,
...,
direction = c("both", "backward", "forward"),
scope = NULL,
k = 2,
trace = FALSE,
steps = 1000

)

Arguments

dist assumed distribution for y variable.

scale optional fixed value for the scale.

parms list of fixed parameters.

... arguments passed to survreg.control.

direction mode of stepwise search, can be one of "both" (default), "backward", or "forward".

scope defines the range of models examined in the stepwise search. This should be a
list containing components upper and lower, both formulae.

k multiple of the number of degrees of freedom used for the penalty. Only k = 2
gives the genuine AIC; k = .(log(nobs)) is sometimes referred to as BIC or
SBC.

trace if positive, information is printed during the running of stepAIC. Larger values
may give more information on the fitting process.

steps maximum number of steps to be considered.

Details

Response Types: Surv

Default values for the NULL arguments and further model details can be found in the source link
below.

Value

MLModel class object.

See Also

psm, survreg, survreg.control, stepAIC, fit, resample

stepAIC, fit, resample

114 SVMModel

Examples

Requires prior installation of suggested packages rms and Hmisc to run

library(survival)

fit(Surv(time, status) ~ ., data = veteran, model = SurvRegModel)

SVMModel Support Vector Machine Models

Description

Fits the well known C-svc, nu-svc, (classification) one-class-svc (novelty) eps-svr, nu-svr (re-
gression) formulations along with native multi-class classification formulations and the bound-
constraint SVM formulations.

Usage

SVMModel(
scaled = TRUE,
type = NULL,
kernel = c("rbfdot", "polydot", "vanilladot", "tanhdot", "laplacedot", "besseldot",

"anovadot", "splinedot"),
kpar = "automatic",
C = 1,
nu = 0.2,
epsilon = 0.1,
cache = 40,
tol = 0.001,
shrinking = TRUE

)

SVMANOVAModel(sigma = 1, degree = 1, ...)

SVMBesselModel(sigma = 1, order = 1, degree = 1, ...)

SVMLaplaceModel(sigma = NULL, ...)

SVMLinearModel(...)

SVMPolyModel(degree = 1, scale = 1, offset = 1, ...)

SVMRadialModel(sigma = NULL, ...)

SVMModel 115

SVMSplineModel(...)

SVMTanhModel(scale = 1, offset = 1, ...)

Arguments

scaled logical vector indicating the variables to be scaled.

type type of support vector machine.

kernel kernel function used in training and predicting.

kpar list of hyper-parameters (kernel parameters).

C cost of constraints violation defined as the regularization term in the Lagrange
formulation.

nu parameter needed for nu-svc, one-svc, and nu-svr.

epsilon parameter in the insensitive-loss function used for eps-svr, nu-svr and eps-bsvm.

cache cache memory in MB.

tol tolerance of termination criterion.

shrinking whether to use the shrinking-heuristics.

sigma inverse kernel width used by the ANOVA, Bessel, and Laplacian kernels.

degree degree of the ANOVA, Bessel, and polynomial kernel functions.

... arguments passed to SVMModel.

order order of the Bessel function to be used as a kernel.

scale scaling parameter of the polynomial and hyperbolic tangent kernels as a conve-
nient way of normalizing patterns without the need to modify the data itself.

offset offset used in polynomial and hyperbolic tangent kernels.

Details

Response Types: factor, numeric

Automatic Tuning of Grid Parameters • SVMANOVAModel: C, degree
• SVMBesselModel: C, order, degree
• SVMLaplaceModel: C, sigma
• SVMLinearModel: C
• SVMPolyModel: C, degree, scale
• SVMRadialModel: C, sigma

Arguments kernel and kpar are automatically set by the kernel-specific constructor functions.
Default values for the NULL arguments and further model details can be found in the source link
below.

Value

MLModel class object.

116 t.test

See Also

ksvm, fit, resample

Examples

fit(sale_amount ~ ., data = ICHomes, model = SVMRadialModel)

t.test Paired t-Tests for Model Comparisons

Description

Paired t-test comparisons of resampled performance metrics from different models.

Usage

S3 method for class 'PerformanceDiff'
t.test(x, adjust = "holm", ...)

Arguments

x performance difference result.
adjust p-value adjustment for multiple statistical comparisons as implemented by p.adjust.
... arguments passed to other methods.

Value

PerformanceDiffTest class object that inherits from array. p-values and mean differences are
contained in the lower and upper triangular portions, respectively, of the first two dimensions.
Model pairs are contined in the third dimension.

Examples

Requires prior installation of suggested package gbm to run

Numeric response example
fo <- sale_amount ~ .
control <- CVControl()

gbm_res1 <- resample(fo, ICHomes, GBMModel(n.trees = 25), control)
gbm_res2 <- resample(fo, ICHomes, GBMModel(n.trees = 50), control)
gbm_res3 <- resample(fo, ICHomes, GBMModel(n.trees = 100), control)

res <- c(GBM1 = gbm_res1, GBM2 = gbm_res2, GBM3 = gbm_res3)
res_diff <- diff(res)
t.test(res_diff)

TreeModel 117

TreeModel Classification and Regression Tree Models

Description

A tree is grown by binary recursive partitioning using the response in the specified formula and
choosing splits from the terms of the right-hand-side.

Usage

TreeModel(
mincut = 5,
minsize = 10,
mindev = 0.01,
split = c("deviance", "gini"),
k = NULL,
best = NULL,
method = c("deviance", "misclass")

)

Arguments

mincut minimum number of observations to include in either child node.

minsize smallest allowed node size: a weighted quantity.

mindev within-node deviance must be at least this times that of the root node for the
node to be split.

split splitting criterion to use.

k scalar cost-complexity parameter defining a subtree to return.

best integer alternative to k requesting the number of terminal nodes of a subtree in
the cost-complexity sequence to return.

method character string denoting the measure of node heterogeneity used to guide cost-
complexity pruning.

Details

Response Types: factor, numeric

Further model details can be found in the source link below.

Value

MLModel class object.

See Also

tree, prune.tree, fit, resample

118 TunedInput

Examples

Requires prior installation of suggested package tree to run

fit(Species ~ ., data = iris, model = TreeModel)

TunedInput Tuned Model Inputs

Description

Recipe tuning over a grid of parameter values.

Usage

TunedInput(x, ...)

S3 method for class 'recipe'
TunedInput(
x,
grid = expand_steps(),
control = MachineShop::settings("control"),
metrics = NULL,
stat = MachineShop::settings("stat.train"),
cutoff = MachineShop::settings("cutoff"),
...

)

Arguments

x untrained recipe.

... arguments passed to other methods.

grid RecipeGrid containing parameter values at which to evaluate a recipe, such as
those returned by expand_steps.

control control function, function name, or call defining the resampling method to be
employed.

metrics metric function, function name, or vector of these with which to calculate per-
formance. If not specified, default metrics defined in the performance functions
are used. Recipe selection is based on the first calculated metric.

stat function or character string naming a function to compute a summary statistic
on resampled metric values for recipe tuning.

cutoff argument passed to the metrics functions.

TunedModel 119

Value

TunedModelRecipe class object that inherits from TunedInput and recipe.

See Also

fit, resample

Examples

library(recipes)
data(Boston, package = "MASS")

rec <- recipe(medv ~ ., data = Boston) %>%
step_pca(all_numeric(), -all_outcomes(), id = "pca")

grid <- expand_steps(
pca = list(num_comp = 1:2)

)

fit(TunedInput(rec, grid = grid), model = GLMModel)

TunedModel Tuned Model

Description

Model tuning over a grid of parameter values.

Usage

TunedModel(
model,
grid = MachineShop::settings("grid"),
fixed = list(),
control = MachineShop::settings("control"),
metrics = NULL,
stat = MachineShop::settings("stat.train"),
cutoff = MachineShop::settings("cutoff")

)

Arguments

model model function, function name, or call defining the model to be tuned.

grid data frame containing parameter values at which to evaluate a single model
supplied to models, such as that returned by expand_params; the number of
parameter-specific values to generate automatically if the model has a pre-defined
grid; or a call to Grid or ParameterGrid.

120 TunedModel

fixed list of fixed parameter values to combine with those in grid.

control control function, function name, or call defining the resampling method to be
employed.

metrics metric function, function name, or vector of these with which to calculate per-
formance. If not specified, default metrics defined in the performance functions
are used. Model selection is based on the first calculated metric.

stat function or character string naming a function to compute a summary statistic
on resampled metric values for model tuning.

cutoff argument passed to the metrics functions.

Details

Response Types: factor, numeric, ordered, Surv

Value

TunedModel class object that inherits from MLModel.

See Also

fit, resample

Examples

Requires prior installation of suggested package gbm to run
May require a long runtime

Automatically generated grid
model_fit <- fit(sale_amount ~ ., data = ICHomes,

model = TunedModel(GBMModel))
varimp(model_fit)
(tuned_model <- as.MLModel(model_fit))
summary(tuned_model)
plot(tuned_model, type = "l")

Randomly sampled grid points
fit(sale_amount ~ ., data = ICHomes,

model = TunedModel(GBMModel, grid = Grid(size = 1000, random = 5)))

User-specified grid
fit(sale_amount ~ ., data = ICHomes,

model = TunedModel(GBMModel,
grid = expand_params(n.trees = c(50, 100),

interaction.depth = 1:2,
n.minobsinnode = c(5, 10))))

unMLModelFit 121

unMLModelFit Revert an MLModelFit Object

Description

Function to revert an MLModelFit object to its original class.

Usage

unMLModelFit(object)

Arguments

object model fit result.

Value

The supplied object with its MLModelFit classes and fields removed.

varimp Variable Importance

Description

Calculate measures of the relative importance of predictors in a model.

Usage

varimp(object, scale = TRUE, ...)

Arguments

object model fit result.

scale logical indicating whether importance measures should be scaled to range from
0 to 100.

... arguments passed to model-specific variable importance functions.

Value

VarImp class object.

See Also

plot

122 XGBModel

Examples

Requires prior installation of suggested package gbm to run

Survival response example
library(survival)

gbm_fit <- fit(Surv(time, status) ~ ., data = veteran, model = GBMModel)
(vi <- varimp(gbm_fit))
plot(vi)

XGBModel Extreme Gradient Boosting Models

Description

Fits models within an efficient implementation of the gradient boosting framework from Chen &
Guestrin.

Usage

XGBModel(params = list(), nrounds = 1, verbose = 0, print_every_n = 1)

XGBDARTModel(
objective = NULL,
aft_loss_distribution = "normal",
aft_loss_distribution_scale = 1,
base_score = 0.5,
eta = 0.3,
gamma = 0,
max_depth = 6,
min_child_weight = 1,
max_delta_step = .(0.7 * is(y, "PoissonVariate")),
subsample = 1,
colsample_bytree = 1,
colsample_bylevel = 1,
colsample_bynode = 1,
lambda = 1,
alpha = 0,
tree_method = "auto",
sketch_eps = 0.03,
scale_pos_weight = 1,
refresh_leaf = 1,
process_type = "default",
grow_policy = "depthwise",

XGBModel 123

max_leaves = 0,
max_bin = 256,
num_parallel_tree = 1,
sample_type = "uniform",
normalize_type = "tree",
rate_drop = 0,
one_drop = 0,
skip_drop = 0,
...

)

XGBLinearModel(
objective = NULL,
aft_loss_distribution = "normal",
aft_loss_distribution_scale = 1,
base_score = 0.5,
lambda = 0,
alpha = 0,
updater = "shotgun",
feature_selector = "cyclic",
top_k = 0,
...

)

XGBTreeModel(
objective = NULL,
aft_loss_distribution = "normal",
aft_loss_distribution_scale = 1,
base_score = 0.5,
eta = 0.3,
gamma = 0,
max_depth = 6,
min_child_weight = 1,
max_delta_step = .(0.7 * is(y, "PoissonVariate")),
subsample = 1,
colsample_bytree = 1,
colsample_bylevel = 1,
colsample_bynode = 1,
lambda = 1,
alpha = 0,
tree_method = "auto",
sketch_eps = 0.03,
scale_pos_weight = 1,
refresh_leaf = 1,
process_type = "default",
grow_policy = "depthwise",
max_leaves = 0,
max_bin = 256,

124 XGBModel

num_parallel_tree = 1,
...

)

Arguments

params list of model parameters as described in the XGBoost documentation.
nrounds maximum number of boosting iterations.
verbose numeric value controlling the amount of output printed during model fitting,

such that 0 = none, 1 = performance information, and 2 = additional information.
print_every_n numeric value designating the fitting iterations at at which to print output when

verbose > 0.
objective character string specifying the learning task and objective. Possible values for

supported response variable types are as follows.
factor: "multi:softprob", "binary:logistic" (2 levels only)
numeric: "reg:squarederror", "reg:logistic", "reg:gamma", "reg:tweedie",

"rank:pairwise", "rank:ndcg", "rank:map"
PoissonVariate: "count:poisson"

Surv: "survival:cox", "survival:aft"
The first values listed are the defaults for the corresponding response types.

aft_loss_distribution

character string specifying the distribution for the accelerated failure time ob-
jective ("survival:aft") as "normal", "logistic", or "extreme".

aft_loss_distribution_scale

numeric scaling parameter for the accelerated failure time distribution.
base_score initial numeric prediction score of all instances, global bias.
eta, gamma, max_depth, min_child_weight, max_delta_step, subsample, colsample_bytree, colsample_bylevel, colsample_bynode, lambda, alpha, tree_method, sketch_eps, scale_pos_weight, refresh_leaf, process_type, grow_policy, max_leaves, max_bin, num_parallel_tree, sample_type, normalize_type, rate_drop, one_drop, skip_drop, updater, feature_selector, top_k

see params reference.
... arguments passed to XGBModel.

Details

Response Types: factor, numeric, PoissonVariate, Surv
Automatic Tuning of Grid Parameters • XGBDARTModel: nrounds, max_depth, eta, gamma*,

min_child_weight*, subsample, colsample_bytree, rate_drop, skip_drop
• XGBLinearModel: nrounds, lambda, alpha
• XGBTreeModel: nrounds, max_depth, eta, gamma*, min_child_weight*, subsample,
colsample_bytree

* included only in randomly sampled grid points

Default values for the NULL arguments and further model details can be found in the source link
below.

In calls to varimp for XGBTreeModel, argument metric may be specified as "Gain" (default) for the
fractional contribution of each predictor to the total gain of its splits, as "Cover" for the number of
observations related to each predictor, or as "Frequency" for the percentage of times each predictor
is used in the trees. Variable importance is automatically scaled to range from 0 to 100. To obtain
unscaled importance values, set scale = FALSE. See example below.

https://xgboost.readthedocs.io/en/latest/parameter.html

XGBModel 125

Value

MLModel class object.

See Also

xgboost, fit, resample

Examples

Requires prior installation of suggested package xgboost to run

model_fit <- fit(Species ~ ., data = iris, model = XGBTreeModel)
varimp(model_fit, metric = "Frequency", scale = FALSE)

Index

∗ datasets
ICHomes, 44

+,SurvMatrix,SurvMatrix-method
(combine), 20

., 6, 32, 51
[,DiscreteVariate,ANY,missing,missing-method

(extract), 30
[,ModelFrame,ANY,ANY,ANY-method

(extract), 30
[,ModelFrame,ANY,missing,ANY-method

(extract), 30
[,ModelFrame,missing,missing,ANY-method

(extract), 30
[,RecipeGrid,ANY,ANY,ANY-method

(extract), 30
[,Resamples,ANY,ANY,ANY-method

(extract), 30
[,Resamples,ANY,missing,ANY-method

(extract), 30
[,Resamples,missing,missing,ANY-method

(extract), 30
[,SurvMatrix,ANY,ANY,ANY-method

(extract), 30
[.BinomialVariate (extract), 30
[.ModelFrame (extract), 30

accuracy (metrics), 53
AdaBagModel, 7, 65
AdaBoostModel, 8, 65
as.MLModel, 10, 34
auc, 73
auc (metrics), 53
Automatic Tuning, 8, 9, 11, 15, 17, 19, 27,

32, 35, 36, 39, 42, 46–48, 51, 69, 76,
82, 84, 90, 91, 115, 124

bagging, 8
bake, 100, 102, 104, 106, 108
bartMachine, 11
BARTMachineModel, 10, 65

BARTModel, 12, 65
base learner, 34
baselearners, 35
BinomialVariate, 45, 85
BinomialVariate (DiscreteVariate), 25
blackboost, 15
BlackBoostModel, 14, 65
boosting, 9
BootControl, 5
BootControl (MLControl), 56
BootOptimismControl, 5
BootOptimismControl (MLControl), 56
brier (metrics), 53
bruto, 32, 51

c, 18, 21, 49, 73, 87
c.Calibration (combine), 20
c.ConfusionList (combine), 20
c.ConfusionMatrix (combine), 20
c.LiftCurve (combine), 20
c.ListOf (combine), 20
c.PerformanceCurve (combine), 20
c.Resamples (combine), 20
C5.0, 17
C5.0Control, 17
C50Model, 16, 65
calibration, 5, 17, 20, 75
cforest, 19
cforest_control, 19
CForestModel, 18, 65
cindex (metrics), 53
clara, 101, 102
combine, 20
confusion, 5, 20, 21, 52, 55, 71, 75, 79, 110
ConfusionMatrix (confusion), 21
control, 20, 86, 93, 94, 96, 97, 111, 118, 120
controls (MLControl), 56
CoxModel, 22, 65
coxph, 23
coxph.control, 22, 23

126

INDEX 127

CoxStepAICModel, 65
CoxStepAICModel (CoxModel), 22
cross_entropy (metrics), 53
ctree_control, 15
curves (performance_curve), 72
CVControl, 5
CVControl (MLControl), 56
CVOptimismControl, 5
CVOptimismControl (MLControl), 56

data frame, 23, 33, 38, 62, 63, 78, 86, 88, 93,
119

dependence, 5, 23, 75
diff, 5, 24
difference, 116
DiscreteVariate, 25, 45

earth, 27
EarthModel, 26, 65
expand_model, 5, 27, 94
expand_params, 5, 28, 119
expand_steps, 5, 29, 118
extract, 30

f_score (metrics), 53
factor, 45
Family, 14, 15, 34, 35, 39
fda, 32
FDAModel, 31, 66
fit, 5, 8–11, 13, 15, 17, 19, 23, 27, 32, 33, 35,

36, 39, 41, 42, 45–48, 50, 52, 61, 62,
64, 67, 69, 75, 77, 78, 81, 82, 84, 88,
90, 92, 93, 95, 98, 110, 111, 113,
116, 117, 119–121, 125

fitting, 85
fnr (metrics), 53
formula, 45, 63
fpr (metrics), 53

gamboost, 35
GAMBoostModel, 34, 66
gbart, 13
gbm, 36
GBMModel, 35, 66
gen.ridge, 32, 51
get_grid, 5, 37, 43
gini (metrics), 53
glm, 41
glm.control, 40, 41

glmboost, 39
GLMBoostModel, 38, 66
GLMModel, 40, 66
glmnet, 42
GLMNetModel, 41, 66
GLMStepAICModel, 66
GLMStepAICModel (GLMModel), 40
Grid, 38, 43, 96, 119

ICHomes, 44
input, 33, 37, 62, 86
inputs, 44, 93
install.packages, 65

kappa2 (metrics), 53
kknn, 46
kmeans, 100
KNNModel, 45, 66
ksvm, 116

lars, 47
LARSModel, 46, 66
lda, 48
LDAModel, 48, 66
library, 65
lift, 5, 20, 49, 75, 110
lm, 50
LMModel, 50, 66
loess, 18

MachineShop (MachineShop-package), 4
MachineShop-package, 4
mae (metrics), 53
mars, 32, 51
Matrix, 103
matrix, 45, 63, 103
mbart, 13
mda, 52
MDAModel, 50, 66
metric, 52, 72, 93, 94, 118, 120
metricinfo, 6, 52, 56
metrics, 5, 20, 53, 59, 73, 79, 87, 96, 112
MLControl, 56
MLMetric, 6, 58
MLMetric<- (MLMetric), 58
MLModel, 6, 59
MLModelFunction (models), 65
model, 28, 33, 37, 62, 64, 86, 94, 97, 111, 119
model.matrix, 60

128 INDEX

modeled inputs, 33, 86
ModeledFrame (ModeledInput), 62
ModeledInput, 45, 62
ModeledRecipe (ModeledInput), 62
ModelFrame, 45, 60, 63, 88
modelinfo, 6, 64, 67
models, 5, 61, 65
mse (metrics), 53
msle (metrics), 53
mvr, 77

naiveBayes, 67
NaiveBayesModel, 66, 67
NegBinomialVariate, 45
NegBinomialVariate (DiscreteVariate), 25
nnet, 69
NNetModel, 66, 68
npv (metrics), 53
numeric, 45

observed, 52
observed responses, 18, 21, 49, 52, 55, 64,

71, 73
OOBControl, 5
OOBControl (MLControl), 56
ordered, 45

p.adjust, 116
pam, 101, 102
ParameterGrid, 69, 119
parameters, 70
partial dependence, 97
PDAModel, 66
PDAModel (FDAModel), 31
performance, 5, 25, 56, 70, 75, 79, 87, 93, 94,

96, 110, 112, 118, 120
performance curve, 20, 55, 75, 110
performance_curve, 5, 72
plot, 6, 18, 21, 24, 25, 49, 72, 73, 74, 87, 121
plots, 97
PLSModel, 66, 76
PoissonVariate, 45
PoissonVariate (DiscreteVariate), 25
polr, 77
POLRModel, 66, 77
polyreg, 32, 51
ppv (metrics), 53
pr_auc (metrics), 53
precision (metrics), 53

predict, 5, 32, 34, 48, 51, 57, 78, 81, 112
predict.fda, 32
predict.lda, 48
predict.mda, 52
predict.qda, 81
predicted, 52
predicted responses, 18, 21, 49, 55, 72, 73
prep, 99, 100, 102–104, 106–108
print, 6, 79
prune.tree, 117
psm, 113

qda, 81
QDAModel, 66, 80
quote, 6, 7

r2 (metrics), 53
randomForest, 82
RandomForestModel, 66, 81
ranger, 84
RangerModel, 66, 83
recall (metrics), 53
recipe, 29, 45, 85, 88, 99–108, 118
recipe_roles, 84
resample, 5, 8, 9, 11, 13, 15, 17–21, 23, 25,

27, 32, 35, 36, 39, 41, 42, 45–50, 52,
55, 58, 61, 62, 64, 67, 69, 71, 73, 75,
77, 81, 82, 84, 86, 90, 92, 93, 95, 98,
110, 111, 113, 116, 117, 119, 120,
125

resampling, 85
response, 5, 34, 64, 87
rfsrc, 89, 90
rfsrc.fast, 90
RFSRCFastModel, 66
RFSRCFastModel (RFSRCModel), 88
RFSRCModel, 66, 88
rmse (metrics), 53
rmsle (metrics), 53
roc_auc (metrics), 53
roc_index (metrics), 53
role_binom, 26, 45
role_binom (recipe_roles), 84
role_case, 33, 87
role_case (recipe_roles), 84
role_pred (recipe_roles), 84
role_surv, 45
role_surv (recipe_roles), 84
rpart, 92

INDEX 129

RPartModel, 66, 91
rpp (metrics), 53

SelectedInput, 45, 58, 62, 64, 92
SelectedModel, 28, 58, 67, 94
SelectedModelFrame (SelectedInput), 92
SelectedModelRecipe (SelectedInput), 92
selection, 97
selections, 99, 101, 103, 105, 107
sensitivity (metrics), 53
settings, 6, 95
spca, 108
specificity (metrics), 53
SplitControl, 5
SplitControl (MLControl), 56
StackedModel, 66, 97
step_kmeans, 98
step_kmedoids, 100
step_lincomp, 100, 103, 108
step_sbf, 102, 105
step_spca, 107
stepAIC, 23, 41, 113
strata, 87
subset, 24
summary, 6, 20, 21, 25, 49, 72, 73, 87, 96, 97,

109
SuperModel, 67, 110
Surv, 45, 85
surv.bart, 13
SurvEvents (SurvMatrix), 112
SurvMatrix, 112
SurvProbs (SurvMatrix), 112
survreg, 113
survreg.control, 113
SurvRegModel, 66, 112
SurvRegStepAICModel, 66
SurvRegStepAICModel (SurvRegModel), 112
SVMANOVAModel, 66
SVMANOVAModel (SVMModel), 114
SVMBesselModel, 66
SVMBesselModel (SVMModel), 114
SVMLaplaceModel, 66
SVMLaplaceModel (SVMModel), 114
SVMLinearModel, 66
SVMLinearModel (SVMModel), 114
SVMModel, 66, 114
SVMPolyModel, 66
SVMPolyModel (SVMModel), 114
SVMRadialModel, 66

SVMRadialModel (SVMModel), 114
SVMSplineModel, 66
SVMSplineModel (SVMModel), 114
SVMTanhModel, 66
SVMTanhModel (SVMModel), 114

t.test, 25, 116
tidy.step_kmeans (step_kmeans), 98
tidy.step_lincomp (step_lincomp), 103
tidy.step_sbf (step_sbf), 105
tnr (metrics), 53
tpr (metrics), 53
TrainControl, 5
TrainControl (MLControl), 56
tree, 117
TreeModel, 66, 117
tunable.step_kmeans (step_kmeans), 98
tunable.step_kmedoids (step_kmedoids),

100
tunable.step_lincomp (step_lincomp), 103
tunable.step_spca (step_spca), 107
TunedInput, 30, 45, 58, 118
TunedModel, 29, 38, 43, 58, 67, 70, 119
TunedModelRecipe (TunedInput), 118
tuning, 96, 97

unMLModelFit, 121

variable importance, 75
varimp, 5, 11, 17, 23, 27, 34, 41, 50, 60, 77,

90, 121, 124

weighted_kappa2 (metrics), 53
weights, 33

XGBDARTModel, 66
XGBDARTModel (XGBModel), 122
XGBLinearModel, 66
XGBLinearModel (XGBModel), 122
XGBModel, 66, 122
xgboost, 125
XGBTreeModel, 66
XGBTreeModel (XGBModel), 122

	MachineShop-package
	.
	AdaBagModel
	AdaBoostModel
	as.MLModel
	BARTMachineModel
	BARTModel
	BlackBoostModel
	C50Model
	calibration
	CForestModel
	combine
	confusion
	CoxModel
	dependence
	diff
	DiscreteVariate
	EarthModel
	expand_model
	expand_params
	expand_steps
	extract
	FDAModel
	fit
	GAMBoostModel
	GBMModel
	get_grid
	GLMBoostModel
	GLMModel
	GLMNetModel
	Grid
	ICHomes
	inputs
	KNNModel
	LARSModel
	LDAModel
	lift
	LMModel
	MDAModel
	metricinfo
	metrics
	MLControl
	MLMetric
	MLModel
	ModeledInput
	ModelFrame
	modelinfo
	models
	NaiveBayesModel
	NNetModel
	ParameterGrid
	performance
	performance_curve
	plot
	PLSModel
	POLRModel
	predict
	print
	QDAModel
	RandomForestModel
	RangerModel
	recipe_roles
	resample
	response
	RFSRCModel
	RPartModel
	SelectedInput
	SelectedModel
	settings
	StackedModel
	step_kmeans
	step_kmedoids
	step_lincomp
	step_sbf
	step_spca
	summary
	SuperModel
	SurvMatrix
	SurvRegModel
	SVMModel
	t.test
	TreeModel
	TunedInput
	TunedModel
	unMLModelFit
	varimp
	XGBModel
	Index

