Package ‘MatrixCorrelation’

February 3, 2021

Encoding UTF-8
Type Package
Title Matrix Correlation Coefficients
Version 0.9.5
Date 2021-02-03
Author Kristian Hovde Liland
Maintainer Kristian Hovde Liland <kristian.liland@nmbu.no>
Description Computation and visualization of matrix correlation coefficients.
The main method is the Similarity of Matrices Index, while various related
measures like r1, r2, r3, r4, Yanai’s GCD, RV, RV2, adjusted RV, Rozeboom’s
linear correlation and Coxhead’s coefficient are included
for comparison and flexibility.
Depends R (>= 3.0.1)
Imports Rcpp, plotrix, pracma, progress, RSpectra
License GPL-2
LazyData TRUE
RoxygenNote 7.1.1
LinkingTo progress, Rcpp, RcppArmadillo
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-02-03 14:00:02 UTC

R topics documented:

allCorrelations ... 2
candy ... 4
cor.test_eq .. 4
Coxhead .. 5
MatrixCorrelation .. 6
PCAcv ... 7
allCorrelations

Description

Compare all correlation measures in the package (or a subset)

Usage

```r
allCorrelations(
  X1,  # first matrix to be compared (data.frames are also accepted).
  X2,  # second matrix to be compared (data.frames are also accepted).
  ncomp1,  # maximum number of subspace components from the first matrix.
  ncomp2,  # maximum number of subspace components from the second matrix.
  methods = c("SMI", "RV", "RV2", "RVadj", "PSI", "r1", "r2", "r3", "r4", "GCD"),  # character vector containing a subset of the supported methods: "SMI", "RV", "RV2", "RVadj", "PSI", "r1", "r2", "r3", "r4", "GCD".
  digits = 3,  # number of digits for numerical output.
  plot = TRUE,  # logical indicating if plotting should be performed (default = TRUE).
  xlab = "",  # optional x axis label.
  ylab = "",  # optional y axis label.
  ...  # additional arguments for SMI or plot.
)
```
Details

For each of the three coefficients a single scalar is computed to describe the similarity between the two input matrices.

Value

A single value measuring the similarity of two matrices.

Author(s)

Kristian Hovde Liland

References

See Also

SMI, RV (RV2/RVadj), r1 (r2/r3/r4/GCD).

Examples

```r
X1 <- scale(matrix(rnorm(100*300), 100,300), scale = FALSE)
usv <- svd(X1)
X2 <- usv$u[,,-3] %*% diag(usv$d[-3]) %*% t(usv$v[,,-3])

allCorrelations(X1,X2, ncomp1 = 5,ncomp2 = 5)
```
Candy data

Description

Measurements from sensory analysis (professional tasting) on a number of candy products obtained by sensory labs. The two labs and the associated data sets are parts of a larger study described in Tomic et al. (2010).

Usage

data(candy)

Format

Two matrices of dimension 18 x 6.

References

cor.test_eq

Test for no correlation between paired samples

Description

Permutation test for squared Pearson correlation between two vectors of samples.

Usage

cor.test_eq(x, y, B = 10000)

Arguments

- **x**: first vector to be compared (or two column matrix/data.frame).
- **y**: second vector to be compared (ommit if included in x).
- **B**: integer number of permutations, default = 10000.

Details

This is a convenience function combining SMI and significant for the special case of vector vs vector comparisons. The null hypothesis is that the correlation between the vectors is +/-1, while significance signifies a deviance toward 0.
Value
A value indicating if the two input vectors are significantly different.

Author(s)
Kristian Hovde Liland

References
Similarity of Matrices Index - Ulf Geir Indahl, Tormod Næs, Kristian Hovde Liland

See Also
plot.SMI (print.SMI/summary.SMI), RV (RV2/RVadj), r1 (r2/r3/r4/GCD), allCorrelations (matrix correlation comparison), PCAcv (cross-validated PCA).

Examples
a <- (1:5) + rnorm(5)
b <- (1:5) + rnorm(5)
cor.test_eq(a,b)

Coxhead
Coxhead's coefficient

Description
Coxhead's coefficient

Usage
Coxhead(X1, X2, weighting = c("sqrt", "min"))

Arguments
X1
first matrix to be compared (data.frames are also accepted).
X2
second matrix to be compared (data.frames are also accepted).
weighting
string indicating if weighting should be sqrt(p*q) or min(p,q) (default = 'sqrt').

Value
A single value measuring the similarity of two matrices. For diagnostic purposes it is accompanied by an attribute "canonical.correlation".
MatrixCorrelation

References

See Also
SMI, RV (RV2/RVadj), Rozeboom, r1 (r2/r3/r4/GCD).

Examples
X <- matrix(rnorm(100*13),nrow=100)
X1 <- X[, 1:5] # Random normal
X2 <- X[, 6:12] # Random normal
X2[,1] <- X2[,1] + X[,5] # Overlap in one variable
Coxhead(X1, X2)

Description
Computation and visualization of matrix correlation coefficients. The main method is the Similarity of Matrices Index, while various related measures like r1, r2, r3, r4, Yanai’s GCD, RV, RV2, adjusted RV, Rozeboom’s linear correlation and Coxhead’s coefficient are included for comparison and flexibility.

References
See Also

SMI, plot.SMI (print.SMI/summary.SMI), RV (RV2/RVadj), r1 (r2/r3/r4/GCD), Rozeboom, Coxhead, allCorrelations (matrix correlation comparison).

Description

PRESS values for PCA as implemented by Eigenvector and described by Bro et al. (2008).

Usage

PCAcv(X, ncomp)

Arguments

X matrix object to perform PCA on.
ncomp integer number of components.

Details

For each number of components predicted residual sum of squares are calculated based on leave-one-out cross-validation. The implementation ensures no over-fitting or information bleeding.

Value

A vector of PRESS-values.

Author(s)

Kristian Hovde Liland

References

See Also

plot.SMI (print.SMI/summary.SMI), RV (RV2/RVadj), r1 (r2/r3/r4/GCD), allCorrelations (matrix correlation comparison).

Examples

X1 <- scale(matrix(rnorm(100*300), 100,300), scale = FALSE)
PCAcv(X1,10)
plot.SMI Result functions for the Similarity of Matrices Index (SMI)

Description

Plotting, printing and summary functions for SMI, plus significance testing.

Usage

S3 method for class 'SMI'
plot(
 x,
 y = NULL,
 x1lab = attr(x, "mat.names")[[1]],
 x2lab = attr(x, "mat.names")[[2]],
 main = "SMI",
 signif = 0.05,
 xlim = c(-pq[1] + 1)/2, (pq[2] + 1)/2,
 ylim = c(0.5, (sum(pq) + 3)/2),
 B = 10000,
 cex = 1,
 cex.sym = 1,
 frame = NULL,
 frame.col = "red",
 frame.lwd = 2,
 replicates = NULL,
 ...
)

S3 method for class 'SMI'
print(x, ...)

S3 method for class 'SMI'
summary(object, ...)

is.signif(x, signif = 0.05, B = 10000, ...)

Arguments

x object of class SMI.
y not used.

x1lab optional label for first matrix.

x2lab optional label for second matrix.

main optional heading (default = SMI).

signif significance level for testing (default=0.05).
plot.SMI

xlim optional plotting limits.
ylim optional plotting limits.
B number of permutations (for significant, default=10000).
cex optional text scaling (default = 1)
cex.sym optional scaling for significance symbols (default = 1)
frame two element integer vector indicating framed components.
frame.col color for framed components.
frame.lwd line width for framed components.
replicates vector of replicates for significance testing.
... additional arguments for plot.
object object of class SMI.

Details

For plotting a diamonad plot is used. High SMI values are light and low SMI values are dark. If orthogonal projections have been used for calculating SMIs, significance symbols are included in the plot unless signif=NULL.

Value

plot silently returns NULL. print and summary return the printed matrix.

Author(s)

Kristian Hovde Liland

References

Similarity of Matrices Index - Ulf G. Indahl, Tormod Næs, Kristian Hovde Liland

See Also

SMI, PCAcv (cross-validated PCA).

Examples

X1 <- scale(matrix(rnorm(100*300), 100,300), scale = FALSE)
usv <- svd(X1)
X2 <- usv$u[,,-3] %*% diag(usv$d[-3]) %*% t(usv$v[,,-3])

smi <- SMI(X1,X2,5,5)
plot(smi, B = 1000) # default B = 10000
print(smi)
summary(smi)
is.signif(smi, B = 1000) # default B = 10000
PSI
Procrustes Similarity Index

Description

An index based on the RV coefficient with Procrustes rotation.

Usage

`PSI(X1, X2, center = TRUE)`

Arguments

- **X1**
 first matrix to be compared (data.frames are also accepted).

- **X2**
 second matrix to be compared (data.frames are also accepted).

- **center**
 logical indicating if input matrices should be centered (default = TRUE).

Value

The Procrustes Similarity Index

References

Examples

```r
X1 <- scale(matrix(rnorm(100*300), 100,300), scale = FALSE)
usv <- svd(X1)
X2 <- usv$u[,,-3] %*% diag(usv$d[-3]) %*% t(usv$v[,,-3])
PSI(X1,X2)
```

Correlational Measures for Matrices

Description

Matrix similarity as described by Ramsey et al. (1984).
Usage

r1(X1, X2, center = TRUE)
r2(X1, X2, center = TRUE)
r3(X1, X2, center = TRUE)
r4(X1, X2, center = TRUE)
GCD(X1, X2, ncomp1 = Rank(X1), ncomp2 = Rank(X2), center = TRUE)

Arguments

X1 first matrix to be compared (data.frames are also accepted).
X2 second matrix to be compared (data.frames are also accepted).
center logical indicating if input matrices should be centered (default = TRUE).
ncomp1 (GCD) number of subspace components from the first matrix (default: full subspace).
ncomp2 (GCD) number of subspace components from the second matrix (default: full subspace).

Details

Details can be found in Ramsey's paper:

• r1: inner product correlation
• r2: orientation-independent inner product correlation
• r3: spectra-independent inner product correlations (including orientation)
• r4: Spectra-Independent inner product Correlations
• GCD: Yanai's Generalized Coefficient of Determination (GCD) Measure. To reproduce the original GCD, use all components. When X1 and X2 are dummy variables, GCD is proportional with Pillai's criterion: tr(W^-1(B+W)).

Value

A single value measuring the similarity of two matrices.

Author(s)

Kristian Hovde Liland

References

See Also

SMI, RV (RV2/RVadj).
Example

```r
X1 <- matrix(rnorm(100*300),100,300)
usv <- svd(X1)
X2 <- usv$u[, -3] %*% diag(usv$d[-3]) %*% t(usv$v[, -3])

r1(X1, X2)
r2(X1, X2)
r3(X1, X2)
r4(X1, X2)
GCD(X1, X2)
GCD(X1, X2, 5, 5)
```

Description

Rozeboom’s squared vector correlation

Usage

```r
Rozeboom(X1, X2)
```

sqveccor(X1, X2)

Arguments

- **X1**: first matrix to be compared (data.frames are also accepted).
- **X2**: second matrix to be compared (data.frames are also accepted).

Value

A single value measuring the similarity of two matrices. For diagnostic purposes it is accompanied by an attribute "canonical.correlation".

Author(s)

Korbinian Strimmer and Kristian Hovde Liland

References

See Also

SMI, RV (RV2/RVadj), Coxhead, r1 (r2/r3/r4/GCD).
Examples

\begin{verbatim}
X <- matrix(rnorm(100*13),nrow=100)
X1 <- X[, 1:5] # Random normal
X2 <- X[, 6:12] # Random normal
X2[,1] <- X2[,1] + X[,5] # Overlap in one variable
Rozeboom(X1, X2)
\end{verbatim}

RV coefficients

Description

Three different RV coefficients: RV, RV2 and adjusted RV.

Usage

RV(X1, X2, center = TRUE)
RV2(X1, X2, center = TRUE)
RVadjMaye(X1, X2, center = TRUE)
RVadjGhaziri(X1, X2, center = TRUE)
RVadj(X1, X2, version = c("Maye", "Ghaziri"), center = TRUE)

Arguments

X1 first matrix to be compared (data.frames are also accepted).
X2 second matrix to be compared (data.frames are also accepted).
center logical indicating if input matrices should be centered (default = TRUE).
version Which version of RV adjusted to apply: "Maye" (default) or "Ghaziri" RV adjusted is run using the RVadj function.

Details

For each of the four coefficients a single scalar is computed to describe the similarity between the two input matrices.

Value

A single value measuring the similarity of two matrices.

Author(s)

Kristian Hovde Liland, Benjamin Leutner (RV2)
significant

References

See Also

SMI, r1 (r2/r3/r4/GCD), Rozeboom, Coxhead.

Examples

X1 <- matrix(rnorm(100*300),100,300)
usv <- svd(X1)
X2 <- usv$u[,-3] %*% diag(usv$d[-3]) %*% t(usv$v[,-3])
RV(X1,X2)
RV2(X1,X2)
RVadj(X1,X2)

significant

Significance estimation for Similarity of Matrices Index (SMI)

Description

Permutation based hypothesis testing for SMI. The nullhypothesis is that a linear function of one matrix subspace is included in the subspace of another matrix.

Usage

significant(smi, B = 10000, replicates = NULL)

Arguments

smi smi object returned by call to SMI.
B integer number of permutations, default = 10000.
replicates integer vector of replicates.
Details
For each combination of components significance is estimated by sampling from a null distribution of no similarity, i.e., when the rows of one matrix is permuted B times and corresponding SMI values are computed. If the vector replicates is included, replicates will be kept together through permutations.

Value
A matrix containing P-values for all combinations of components.

Author(s)
Kristian Hovde Liland

References
Similarity of Matrices Index - Ulf G. Indahl, Tormod Næs Kristian Hovde Liland

See Also
plot.SMI (print.SMI/summary.SMI), RV (RV2/RVadj), r1 (r2/r3/r4/GCD), allCorrelations (matrix correlation comparison).

Examples
X1 <- scale(matrix(rnorm(100*300), 100,300), scale = FALSE)
usv <- svd(X1)
X2 <- usv$u[,,-3] %*% diag(usv$d[-3]) %*% t(usv$v[,,-3])

(smi <- SMI(X1,X2,5,5))
significant(smi, B = 1000) # default B = 10000

SMI

Similarity of Matrices Index (SMI)

Description
A similarity index for comparing coupled data matrices.

Usage
SMI(
 X1,
 X2,
 ncomp1 = Rank(X1) - 1,
 ncomp2 = Rank(X2) - 1,
 projection = "Orthogonal",
)
Scores1 = NULL,
Scores2 = NULL
)

Arguments

X1 first matrix to be compared (data.frames are also accepted).
X2 second matrix to be compared (data.frames are also accepted).
ncomp1 maximum number of subspace components from the first matrix.
ncomp2 maximum number of subspace components from the second matrix.
projection type of projection to apply, defaults to "Orthogonal", alternatively "Procrustes".
Scores1 user supplied score-matrix to replace singular value decomposition of first matrix.
Scores2 user supplied score-matrix to replace singular value decomposition of second matrix.

Details

A two-step process starts with extraction of stable subspaces using Principal Component Analysis or some other method yielding two orthonormal bases. These bases are compared using Orthogonal Projection (OP / ordinary least squares) or Procrustes Rotation (PR). The result is a similarity measure that can be adjusted to various data sets and contexts and which includes explorative plotting and permutation based testing of matrix subspace equality.

Value

A matrix containing all combinations of components. Its class is "SMI" associated with print, plot, summary methods.

Author(s)

Kristian Hovde Liland

References

See Also

plot.SMI (print.SMI/summary.SMI), RV (RV2/RVadj), r1 (r2/r3/r4/GCD), allCorrelations (matrix correlation comparison), PCAcv (cross-validated PCA).

Examples

Simulation
X1 <- scale(matrix(rnorm(100*300), 100,300), scale = FALSE)
usv <- svd(X1)
X2 <- usv$u[,,-3] %*% diag(usv$d[-3]) %*% t(usv$v[,,-3])
(smi <- SMI(X1,X2,5,5))
plot(smi, B = 1000) # default B = 10000

Sensory analysis
data(candy)
plot(SMI(candy$Panel1, candy$Panel2, 3,3, projection = "Procrustes"),
 frame = c(2,2), B = 1000, x1lab = "Panel1", x2lab = "Panel2") # default B = 10000
Index

allCorrelations, 2, 5, 7, 15, 16

candy, 4
cor.test.eq, 4
Coxhead, 5, 7, 12, 14

GCD (r1), 10

is.signif (plot.SMI), 8

MatrixCorrelation, 6
MatrixCorrelation-package
 (MatrixCorrelation), 6

PCAcv, 5, 7, 9, 16
plot.SMI, 5, 7, 8, 15, 16
print.SMI (plot.SMI), 8
PSI, 10

r1, 3, 5–7, 10, 12, 14–16
r2 (r1), 10
r3 (r1), 10
r4 (r1), 10
Rozeboom, 6, 7, 12, 14
RV, 3, 5–7, 11, 12, 13, 15, 16
RV2 (RV), 13
RVadj (RV), 13
RVadjGhaziri (RV), 13
RVadjMaye (RV), 13

significant, 14
SMI, 3, 6, 7, 9, 11, 12, 14, 15
sqveccor (Rozeboom), 12
summary.SMI (plot.SMI), 8