Package ‘MultOrdRS’

March 30, 2021

Type Package

Title Model Multivariate Ordinal Responses Including Response Styles

Version 0.1-2

Date 2021-03-26

Author Gunther Schauberger

Maintainer Gunther Schauberger <gunther.schauberger@tum.de>

Description In the case of multivariate ordinal responses, parameter estimates can be severely biased if personal response styles are ignored. This package provides methods to account for personal response styles and to explain the effects of covariates on the response style, as proposed by Schauberger and Tutz 2021 <doi:10.1177/1471082X20978034>. The method is implemented both for the multivariate cumulative model and the multivariate adjacent categories model.

License GPL (>= 2)

Imports Rcpp (>= 0.12.4), statmod

LinkingTo Rcpp, RcppArmadillo

SystemRequirements C++11

RoxygenNote 7.1.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2021-03-29 23:42:06 UTC

R topics documented:

MultOrdRS-package ... 2
ctrl multordRS .. 4
GLES17 .. 8
multordRS ... 10
plot MultOrdRS .. 14
tenseness ... 17

Index 20
MultOrdRS-package
Model Multivariate Ordinal Responses Including Response Styles

Description

A model for multivariate ordinal responses. The response is modelled using a mixed model approach that is also capable of the inclusion of response style effects of the respondents.

Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>
https://orcid.org/0000-0002-0392-1580

References

See Also

multordRS ctrl.multordRS plot.MultOrdRS

Examples

data(tenseness)

create a small subset of the data to speed up calculations
set.seed(1860)
tenseness <- tenseness[sample(1:nrow(tenseness), 300),]

scale all metric variables to get comparable parameter estimates
tenseness$Age <- scale(tenseness$Age)
tenseness$Income <- scale(tenseness$Income)

two formulas, one without and one with explanatory variables (gender and age)
f.tense0 <- as.formula(paste("cbind(" , paste(names(tenseness)[1:4],collapse="",""),"- 1")
f.tense1 <- as.formula(paste("cbind(" , paste(names(tenseness)[1:4],collapse="","")," - Gender + Age")

####

Adjacent Categories Models
####

Multivariate adjacent categories model, without response style, without explanatory variables
m.tense0 <- multordRS(f.tense0, data = tenseness, control = ctrl.multordRS(RS = FALSE, cores = 2))
m.tense0
Multivariate adjacent categories model, with response style as a random effect, without explanatory variables
```r
m.tense1 <- multordRS(f.tense0, data = tenseness)
m.tense1
```

Multivariate adjacent categories model, with response style as a random effect, without explanatory variables for response style BUT for location
```r
m.tense2 <- multordRS(f.tense1, data = tenseness, control = ctrl.multordRS(XforRS = FALSE))
m.tense2
```

Multivariate adjacent categories model, with response style as a random effect, with explanatory variables for location AND response style
```r
m.tense3 <- multordRS(f.tense1, data = tenseness)
m.tense3
```
```
plot(m.tense3)
```

Cumulative Models

####

Multivariate cumulative model, without response style, without explanatory variables
```r
m.tense0.cumul <- multordRS(f.tense0, data = tenseness, control = ctrl.multordRS(RS = FALSE), model = "cumulative")
m.tense0.cumul
```

Multivariate cumulative model, with response style as a random effect, without explanatory variables
```r
m.tense1.cumul <- multordRS(f.tense0, data = tenseness, model = "cumulative")
m.tense1.cumul
```

Multivariate cumulative model, with response style as a random effect, with explanatory variables for response style BUT for location
```r
m.tense2.cumul <- multordRS(f.tense1, data = tenseness, control = ctrl.multordRS(XforRS = FALSE), model = "cumulative")
m.tense2.cumul
```

Multivariate cumulative model, with response style as a random effect, with explanatory variables for location AND response style
```r
m.tense3.cumul <- multordRS(f.tense1, data = tenseness, model = "cumulative")
m.tense3.cumul
```
```
plot(m.tense3.cumul)
```

Examples from Schauberger and Tutz (2020)

Data from the German Longitudinal Election Study (GLES) 2017

Source: German Longitudinal Election Study 2017
Rossteutscher et al. 2017, https://doi.org/10.4232/1.12927

load GLES data
```
data(GLES17)
```

scale data
```
GLES17[,7:11] <- scale(GLES17[,7:11])
```

define formula
```
f.GLES <- as.formula(cbind(RefugeeCrisis, ClimateChange, Terrorism, 
Globalization, Turkey, NuclearEnergy) ~
Age + Gender + Unemployment + EastWest + Abitur)
```

fit adjacent categories model without and with response style parameters
```
m.GLES0 <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(RS = FALSE, cores = 6))
m.GLES <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(cores = 6))
```

```
m.GLES0
m.GLES
```

```
plot(m.GLES, main = "Adjacent categories model")
```

fit cumulative model without and with response style parameters (takes pretty long!!!)
```
m.GLES20 <- multordRS(f.GLES, data = GLES17, model="cumul", 
control = ctrl.multordRS(opt.method = "nlminb", cores = 6, RS = FALSE))
m.GLES2 <- multordRS(f.GLES, data = GLES17, model="cumul", 
control = ctrl.multordRS(opt.method = "nlminb", cores = 6))
```

```
m.GLES20
m.GLES2
```

```
plot(m.GLES2, main = "Cumulative model")
```

ctrl.multordRS

Control Function for multordRS

Description

Control function for multordRS, a model for multivariate ordinal responses including response styles
Usage

```r
ctrl.multordRS(
  RS = TRUE,
  thresholds.acat = c("full", "shift", "minimal"),
  XforRS = TRUE,
  opt.method = c("L-BFGS-B", "nlminb"),
  Q = 10,
  cores = 5,
  lambda = 0.01
)
```

Arguments

- **RS** Logical value indicating whether response style should be modelled.
- **thresholds.acat** Type of parametrization used for thresholds: thresholds = "full" implies separate estimates of threshold values for each response variable; thresholds = "shift" implies equal threshold parameter across all response variables modified by shift parameters for each response variable; thresholds = "minimal" implies equal threshold parameter across all response variables. This option only applies for adjacent categories models (model = "acat" and is not implemented for cumulative models.)
- **XforRS** Logical value indicating whether also covariate effects on the response style should be considered. Only relevant if RS = TRUE.
- **opt.method** Specifies optimization algorithm used by `optim`, either L-BFGS-B or `nlminb`.
- **Q** Number of nodes to be used (per dimension) in Gauss-Hermite-Quadrature. If RS = TRUE, Gauss-Hermite-Quadrature is two-dimensional.
- **cores** Number of cores to be used in parallelized computation.
- **lambda** Tuning parameter for internal ridge penalty. It is supposed to be set to a small value to stabilize estimates.

Value

Returns list of control parameters used in `multordRS`.

Author(s)

Gunther Schauberger

<gunther.schauberger@tum.de>

https://orcid.org/0000-0002-0392-1580

References

Examples

data(tenseness)

create a small subset of the data to speed up calculations
set.seed(1860)
tenseness <- tenseness[sample(1:nrow(tenseness), 300),]

scale all metric variables to get comparable parameter estimates
tenseness$Age <- scale(tenseness$Age)
tenseness$Income <- scale(tenseness$Income)

two formulas, one without and one with explanatory variables (gender and age)
f.tense0 <- as.formula(paste("cbind("[,paste(names(tenseness)[1:4],collapse="",""),") ~ 1"))
f.tense1 <- as.formula(paste("cbind("[,paste(names(tenseness)[1:4],collapse="",""),") ~ Gender + Age"))

####
Adjacent Categories Models
####

Multivariate adjacent categories model, without response style,
without explanatory variables
m.tense0 <- multordRS(f.tense0, data = tenseness, control = ctrl.multordRS(RS = FALSE))
m.tense0

Multivariate adjacent categories model, with response style as a random effect,
without explanatory variables
m.tense1 <- multordRS(f.tense0, data = tenseness)
m.tense1

Multivariate adjacent categories model, with response style as a random effect,
without explanatory variables for response style BUT for location
m.tense2 <- multordRS(f.tense1, data = tenseness, control = ctrl.multordRS(XforRS = FALSE))
m.tense2

Multivariate adjacent categories model, with response style as a random effect, with
explanatory variables for location AND response style
m.tense3 <- multordRS(f.tense1, data = tenseness)
m.tense3

plot(m.tense3)

####
Cumulative Models
Examples from Schauberger and Tutz (2020) on Data from the German Longitudinal Election Study (GLES) 2017

Multivariate cumulative model, without response style, without explanatory variables
```r
m.tense0.cumul <- multordRS(f.tense0, data = tenseness, control = ctrl.multordRS(RS = FALSE), model = "cumulative")
m.tense0.cumul
```

Multivariate cumulative model, with response style as a random effect, without explanatory variables
```r
m.tense1.cumul <- multordRS(f.tense0, data = tenseness, model = "cumulative")
m.tense1.cumul
```

Multivariate cumulative model, with response style as a random effect, without explanatory variables for response style BUT for location
```r
m.tense2.cumul <- multordRS(f.tense1, data = tenseness, control = ctrl.multordRS(XforRS = FALSE), model = "cumulative")
m.tense2.cumul
```

Multivariate cumulative model, with response style as a random effect, with explanatory variables for location AND response style
```r
m.tense3.cumul <- multordRS(f.tense1, data = tenseness, model = "cumulative")
m.tense3.cumul
```

plot(m.tense3.cumul)

Examples from Schauberger and Tutz (2020) on Data from the German Longitudinal Election Study (GLES) 2017

Source: German Longitudinal Election Study 2017
Rossteutscher et al. 2017, https://doi.org/10.4232/1.12927

load GLES data
```r
data(GLES17)
```

scale data
```r
GLES17[,7:11] <- scale(GLES17[,7:11])
```

define formula
```r
f.GLES <- as.formula(cbind(RefugeeCrisis, ClimateChange, Terrorism, Globalization, Turkey, NuclearEnergy) ~ Age + Gender + Unemployment + EastWest + Abitur)
```

fit adjacent categories model without and with response style parameters
```r
m.GLE50 <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(RS = FALSE, cores = 6))
m.GLES <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(cores = 6))
m.GLE50
m.GLES
```
plot(m.GLES, main = "Adjacent categories model")

fit cumulative model without and with response style parameters (takes pretty long!!!)
m.GLES20 <- multordRS(f.GLES, data = GLES17, model="cumul", control = ctrl.multordRS(opt.method = "nlminb", cores = 6, RS = FALSE))

m.GLES2 <- multordRS(f.GLES, data = GLES17, model="cumul", control = ctrl.multordRS(opt.method = "nlminb", cores = 6))

m.GLES20
m.GLES2

plot(m.GLES2, main = "Cumulative model")

GLES17
German Longitudinal Election Study 2017 (GLES17)

Description

Data from the German Longitudinal Election Study (GLES) from 2017 (Rossteutscher et al., 2017, https://doi.org/10.4232/1.12927). The GLES is a long-term study of the German electoral process. It collects pre- and post-election data for several federal elections, the data used here originate from the pre-election study for 2017.

Format

A data frame containing data from the German Longitudinal Election Study with 2036 observations. The data contain socio-demographic information about the participants as well as their responses to items about specific political fears.

- **RefugeeCrisis** How afraid are you due to the refugee crisis? (Likert scale from 1 (not afraid at all) to 7 (very afraid))
- **ClimateChange** How afraid are you due to the global climate change? (Likert scale from 1 (not afraid at all) to 7 (very afraid))
- **Terrorism** How afraid are you due to the international terrorism? (Likert scale from 1 (not afraid at all) to 7 (very afraid))
- **Globalization** How afraid are you due to the globalization? (Likert scale from 1 (not afraid at all) to 7 (very afraid))
- **Turkey** How afraid are you due to the political developments in Turkey? (Likert scale from 1 (not afraid at all) to 7 (very afraid))
- **NuclearEnergy** How afraid are you due to the use of nuclear energy? (Likert scale from 1 (not afraid at all) to 7 (very afraid))
- **Age** Age in years
Gender 0: male, 1: female
EastWest 0: West Germany, 1: East Germany
Abitur High School Diploma, 1: Abitur/A levels, 0: else
Unemployment 1: currently unemployed, 0: else

Source

References

Examples

###
Examples from Schauberger and Tutz (2020)
Data from the German Longitudinal Election Study (GLES) 2017
###

####
Source: German Longitudinal Election Study 2017
Rossteutscher et al. 2017, https://doi.org/10.4232/1.12927
####

load GLES data
data(GLES17)

scale data
GLES17[,7:11] <- scale(GLES17[,7:11])

define formula
f.GLES <- as.formula(cbind(RefugeeCrisis, ClimateChange, Terrorism, Globalization, Turkey, NuclearEnergy) ~ Age + Gender + Unemployment + EastWest + Abitur)

fit adjacent categories model without and with response style parameters
m.GLES0 <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(RS = FALSE, cores = 6))
m.GLES <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(cores = 6))
m.GLES0
m.GLES

plot(m.GLES, main = "Adjacent categories model")
fit cumulative model without and with response style parameters (takes pretty long!!!)
m.GLES20 <- multordRS(f.GLES, data = GLES17, model="cumul",
control = ctrl.multordRS(opt.method = "nlminb", cores = 6, RS = FALSE))

m.GLES2 <- multordRS(f.GLES, data = GLES17, model="cumul",
control = ctrl.multordRS(opt.method = "nlminb", cores = 6))

m.GLES20
m.GLES2

plot(m.GLES2, main = "Cumulative model")

multordRS

Model Multivariate Ordinal Responses Including Response Styles

Description

A model for multivariate ordinal responses. The response is modelled using a mixed model approach that is also capable of the inclusion of response style effects of the respondents.

Usage

multordRS(
 formula,
 data = NULL,
 control = ctrl.multordRS(),
 se = TRUE,
 model = c("acat", "cumulative")
)

Arguments

- **formula**: Formula containing the (multivariate) ordinal response on the left side and the explanatory variables on the right side.
- **data**: Data frame containing the ordinal responses as well as the explanatory variables from the formula.
- **control**: Control argument for multord() function. For details see `ctrl.multordRS`.
- **se**: Should standard errors be calculated for the regression coefficients? Default is TRUE.
- **model**: Specifies, which type of model is used, either the (multivariate) adjacent categories model (model = "acat") or the (multivariate) cumulative model (model = "cumulative").
Value

- **beta.thresh**: Matrix containing all threshold parameters for the respective model.
- **beta.shift**: Vector containing all shift parameters. Only relevant if `model = "acat"` and `thresholds.acat = "shift"`.
- **beta.X**: Vector containing parameter estimates for the location effects of the explanatory variables.
- **beta.XRS**: Vector containing parameter estimates for the response style effects of the explanatory variables.
- **Sigma**: Estimate of the variance (or covariance matrix) of the random effects. The estimate is a matrix if person-specific random response style effects are considered in the model (i.e. if `RS = TRUE`).
- **Y**: Matrix containing the explanatory variables.
- **X**: Data frame containing the multivariate ordinal response, one row per observation, one column per response variable.
- **se.thresh**: Matrix containing all standard errors of the threshold parameters for the respective model.
- **se.shift**: Vector containing all standard errors of the shift parameters. Only relevant if `model = "acat"` and `thresholds.acat = "shift"`.
- **se.X**: Vector containing standard errors of the parameter estimates for the location effects of the explanatory variables.
- **se.XRS**: Vector containing standard errors of the parameter estimates for the response style effects of the explanatory variables.
- **coef.vec**: Complete vector of all parameter estimates (for internal use).
- **se.vec**: Complete vector of all standard errors (for internal use).
- **design.values**: Some values of the design matrix (for internal use).
- **loglik**: (Marginal) Log Likelihood
- **call**: Function call
- **df**: Degrees of freedom
- **control**: Control argument from function call

Author(s)

Gunther Schauberger
<gunther.schauberger@tum.de>
https://orcid.org/0000-0002-0392-1580

References

See Also

ctrl.multordRS MultOrdRS-package plot.MultOrdRS

Examples

data(tenseness)

create a small subset of the data to speed up calculations
set.seed(1860)
tenseness <- tenseness[sample(1:nrow(tenseness), 300),]

scale all metric variables to get comparable parameter estimates
tenseness$Age <- scale(tenseness$Age)
tenseness$Income <- scale(tenseness$Income)

two formulas, one without and one with explanatory variables (gender and age)
f.tense0 <- as.formula(paste("cbind(" paste(names(tenseness)[1:4],collapse="","",1")")
f.tense1 <- as.formula(paste("cbind(" paste(names(tenseness)[1:4],collapse="","",") ~ Gender + Age")")

Adjacent Categories Models

Multivariate adjacent categories model, without response style, without explanatory variables
m.tense0 <- multordRS(f.tense0, data = tenseness, control = ctrl.multordRS(RS = FALSE, cores = 2))
m.tense0

Multivariate adjacent categories model, with response style as a random effect, without explanatory variables
m.tense1 <- multordRS(f.tense0, data = tenseness)
m.tense1

Multivariate adjacent categories model, with response style as a random effect, without explanatory variables for response style BUT for location
m.tense2 <- multordRS(f.tense1, data = tenseness, control = ctrl.multordRS(XforRS = FALSE))
m.tense2

Multivariate adjacent categories model, with response style as a random effect, with explanatory variables for location AND response style
m.tense3 <- multordRS(f.tense1, data = tenseness)
m.tense3

plot(m.tense3)
Cumulative Models

Multivariate cumulative model, without response style, without explanatory variables
```
m.tense0.cumul <- multordRS(f.tense0, data = tenseness, control = ctrl.multordRS(RS = FALSE),
                           model = "cumulative")
m.tense0.cumul
```

Multivariate cumulative model, with response style as a random effect, without explanatory variables
```
m.tense1.cumul <- multordRS(f.tense0, data = tenseness, model = "cumulative")
m.tense1.cumul
```

Multivariate cumulative model, with response style as a random effect, without explanatory variables for response style BUT for location
```
m.tense2.cumul <- multordRS(f.tense1, data = tenseness, control = ctrl.multordRS(XforRS = FALSE),
                           model = "cumulative")
m.tense2.cumul
```

Multivariate cumulative model, with response style as a random effect, with explanatory variables for location AND response style
```
m.tense3.cumul <- multordRS(f.tense1, data = tenseness, model = "cumulative")
m.tense3.cumul
```

```
predict(m.tense3.cumul)
```

```
# Examples from Schaubberger and Tutz (2020)
# Data from the German Longitudinal Election Study ( GLES) 2017
# Source: German Longitudinal Election Study 2017
# Rossteutscher et al. 2017, https://doi.org/10.4232/1.12927
```

load GLES data
```
data(GLES17)
```

scale data
```
GLES17[,7:11] <- scale(GLES17[,7:11])
```

define formula
```
f.GLES <- as.formula(cbind(RefugeeCrisis, ClimateChange, Terrorism,
                           Globalization, Turkey, NuclearEnergy) ~
                           Age + Gender + Unemployment + EastWest + Abitur)
```

fit adjacent categories model without and with response style parameters
```
m.GLES0 <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(RS = FALSE, cores = 6))
m.GLES <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(cores = 6))
```

m.GLES0
m.GLES
plot(m.GLES, main = "Adjacent categories model")

fit cumulative model without and with response style parameters (takes pretty long!!!)
m.GLES20 <- multordRS(f.GLES, data = GLES17, model="cumul",
control = ctrl.multordRS(opt.method = "nlminb", cores = 6, RS = FALSE))

m.GLES2 <- multordRS(f.GLES, data = GLES17, model="cumul",
control = ctrl.multordRS(opt.method = "nlminb", cores = 6))

m.GLES20
m.GLES2

plot(m.GLES2, main = "Cumulative model")

plot.MultOrdRS

Plot function for MultOrdRS

Description

Plot function for a MultOrdRS object. Plots show coefficients of the explanatory variables, both with respect to location and response styles. The coefficient pairs are displayed as stars, where the rays represent (1-alpha) confidence intervals.

Usage

```r
## S3 method for class 'MultOrdRS'
plot(x, alpha = 0.05, CIfactor = 0.9, ...)
```

Arguments

- `x` MultOrdRS object
- `alpha` Specifies the confidence level 1-alpha of the confidence interval.
- `CIfactor` Argument that helps to control the appearance (the width) of the stars that represent the confidence intervals of both parameters (location and response style) corresponding to one covariate.
- `...` Further plot arguments.

Value

No return value, called for side effects

Author(s)

Gunther Schaubeger

<gunther.schauberger@tum.de>

https://orcid.org/0000-0002-0392-1580
plot.MultOrdRS

References

See Also

multordRS, ctrl.multordRS

Examples

data(tenseness)

create a small subset of the data to speed up calculations
set.seed(1860)
tenseness <- tenseness[sample(1:nrow(tenseness), 300),]

scale all metric variables to get comparable parameter estimates
tenseness$Age <- scale(tenseness$Age)
tenseness$Income <- scale(tenseness$Income)

two formulas, one without and one with explanatory variables (gender and age)
f.tense0 <- as.formula(paste("cbind(" ,paste(names(tenseness)[1:4], collapse="","), ") ~ 1"))
f.tense1 <- as.formula(paste("cbind(" ,paste(names(tenseness)[1:4], collapse="","),") ~ Gender + Age"))

####
Adjacent Categories Models
####

Multivariate adjacent categories model, without response style, without explanatory variables
m.tense0 <- multordRS(f.tense0, data = tenseness, control = ctrl.multordRS(RS = FALSE))
m.tense0

Multivariate adjacent categories model, with response style as a random effect, without explanatory variables
m.tense1 <- multordRS(f.tense0, data = tenseness)
m.tense1

Multivariate adjacent categories model, with response style as a random effect, without explanatory variables for response style BUT for location
m.tense2 <- multordRS(f.tense1, data = tenseness, control = ctrl.multordRS(XforRS = FALSE))
m.tense2

Multivariate adjacent categories model, with response style as a random effect, with explanatory variables for location AND response style
m.tense3 <- multordRS(f.tense1, data = tenseness)
m.tense3
Cumulative Models

Multivariate cumulative model, without response style, without explanatory variables
```r
m.tense0.cumul <- multordRS(f.tense0, data = tenseness,
                           control = ctrl.multordRS(RS = FALSE), model = "cumulative")
m.tense0.cumul
```

Multivariate cumulative model, with response style as a random effect, without explanatory variables
```r
m.tense1.cumul <- multordRS(f.tense0, data = tenseness, model = "cumulative")
m.tense1.cumul
```

Multivariate cumulative model, with response style as a random effect, without explanatory variables for response style BUT for location
```r
m.tense2.cumul <- multordRS(f.tense1, data = tenseness,
                           control = ctrl.multordRS(XforRS = FALSE), model = "cumulative")
m.tense2.cumul
```

Multivariate cumulative model, with response style as a random effect, with explanatory variables for location AND response style
```r
m.tense3.cumul <- multordRS(f.tense1, data = tenseness, model = "cumulative")
m.tense3.cumul
```

```r
plot(m.tense3)
```

Source: German Longitudinal Election Study 2017

Rossteutscher et al. 2017, https://doi.org/10.4232/1.12927

```r
## Examples from Schauberger and Tutz (2020)
## Data from the German Longitudinal Election Study (GLES) 2017
```

load GLES data
```r
data(GLES17)
```

scale data
```r
GLES17[,7:11] <- scale(GLES17[,7:11])
```

define formula
```r
f.GLES <- as.formula(cbind(RefugeeCrisis, ClimateChange, Terrorism,
                           Globalization, Turkey, NuclearEnergy) ~
                       Age + Gender + Unemployment + EastWest + Abitur)
```

fit adjacent categories model without and with response style parameters
m.GLES0 <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(RS = FALSE, cores = 6))
m.GLES <- multordRS(f.GLES, data = GLES17, control = ctrl.multordRS(cores = 6))

m.GLES0
m.GLES

plot(m.GLES, main = "Adjacent categories model")

fit cumulative model without and with response style parameters (takes pretty long!!)
m.GLES20 <- multordRS(f.GLES, data = GLES17, model="cumul", control = ctrl.multordRS(opt.method = "nlminb", cores = 6, RS = FALSE))
m.GLES2 <- multordRS(f.GLES, data = GLES17, model="cumul", control = ctrl.multordRS(opt.method = "nlminb", cores = 6))
m.GLES20
m.GLES2

plot(m.GLES2, main = "Cumulative model")

tenseness

Tenseness data from the Freiburg Complaint Checklist (tenseness)

Description

Data from the Freiburg Complaint Checklist. The data contain all 8 items corresponding to the scale Tenseness for 1847 participants of the standardization sample of the Freiburg Complaint Checklist. Additionally, several person characteristics are available.

Format

A data frame containing data from the Freiburg Complaint Checklist with 1847 observations. All items refer to the scale Tenseness and are measured on a 5-point Likert scale where low numbers correspond to low frequencies or low intensities of the respective complaint and vice versa.

Clammy_hands Do you have clammy hands?
Sweat Attacks Do you have sudden attacks of sweating?
Clumsiness Do you notice that you behave clumsy?
Wavering_hands Are your hands wavering frequently, e.g. when lightning a cigarette or when holding a cup?
Restless_hands Do you notice that your hands are restless?
Restless_feet Do you notice that your feet are restless?
Twitching_eyes Do you notice unvoluntary twitching of your eyes?
Twitching_mouth Do you notice unvoluntary twitching of your mouth?
Gender Gender of the participant
Household Does participant live alone in a household or together with others?
WestEast is the participant from East Germany (former GDR) or West Germany?
Age Age in 15 categories, treated as continuous variable
Abitur Does the participant have Abitur (a-levels)?
Income Income in 11 categories, treated as continuous variable

Source

Examples

data(tenseness)

create a small subset of the data to speed up calculations
set.seed(1860)
tenseness <- tenseness[sample(1:nrow(tenseness), 300),]

scale all metric variables to get comparable parameter estimates
tenseness$Age <- scale(tenseness$Age)
tenseness$Income <- scale(tenseness$Income)

two formulas, one without and one with explanatory variables (gender and age)
f.tense0 <- as.formula(paste("cbind(",paste(names(tenseness)[1:4],collapse=","),") ~ 1"))
f.tense1 <- as.formula(paste("cbind(",paste(names(tenseness)[1:4],collapse=","),") ~ Gender + Age"))

####
Adjacent Categories Models
####

Multivariate adjacent categories model, without response style, without explanatory variables
m.tense0 <- multordRS(f.tense0, data = tenseness, control = ctrl.multordRS(RS = FALSE))
m.tense0

Multivariate adjacent categories model, with response style as a random effect, without explanatory variables
m.tense1 <- multordRS(f.tense0, data = tenseness)
m.tense1

Multivariate adjacent categories model, with response style as a random effect, without explanatory variables for response style BUT for location
m.tense2 <- multordRS(f.tense1, data = tenseness, control = ctrl.multordRS(XforRS = FALSE))
m.tense2

Multivariate adjacent categories model, with response style as a random effect, with
explanatory variables for location AND response style
m.tense3 <- multordRS(f.tense1, data = tenseness)
m.tense3

plot(m.tense3)

####
Cumulative Models
####

Multivariate cumulative model, without response style, without explanatory variables
m.tense0.cumul <- multordRS(f.tense0, data = tenseness, control =
 ctrl.multordRS(RS = FALSE), model = "cumulative")

m.tense0.cumul

Multivariate cumulative model, with response style as a random effect,
without explanatory variables
m.tense1.cumul <- multordRS(f.tense1, data = tenseness, model = "cumulative")
m.tense1.cumul

Multivariate cumulative model, with response style as a random effect,
without explanatory variables for response style BUT for location
m.tense2.cumul <- multordRS(f.tense1, data = tenseness,
 control = ctrl.multordRS(XforRS = FALSE), model = "cumulative")
m.tense2.cumul

Multivariate cumulative model, with response style as a random effect,
with explanatory variables
for location AND response style
m.tense3.cumul <- multordRS(f.tense1, data = tenseness, model = "cumulative")
m.tense3.cumul

plot(m.tense3.cumul)
Index

* adjacent
 ctrl.multordRS, 4
 multordRS, 10
 MultOrdRS-package, 2

* categories
 ctrl.multordRS, 4
 multordRS, 10
 MultOrdRS-package, 2

* cumulative
 ctrl.multordRS, 4
 multordRS, 10
 MultOrdRS-package, 2

* datasets
 GLES17, 8
 tenseness, 17

* multivariate
 ctrl.multordRS, 4
 multordRS, 10
 MultOrdRS-package, 2

* ordinal
 ctrl.multordRS, 4
 multordRS, 10
 MultOrdRS-package, 2

* response
 ctrl.multordRS, 4
 multordRS, 10
 MultOrdRS-package, 2

* style
 ctrl.multordRS, 4
 multordRS, 10
 MultOrdRS-package, 2

ctrl.multordRS, 2, 4, 10, 12, 15
 GLES17, 8
 multordRS, 2, 5, 6, 10, 15
 MultOrdRS-package, 2
 optim, 5
 plot.MultOrdRS, 2, 6, 12, 14