Package ‘MvBinary’

October 12, 2022

Type Package
Title Modelling Multivariate Binary Data with Blocks of Specific One-Factor Distribution
Version 1.1
Date 2016-12-15
Author Matthieu Marbac and Mohammed Sedki
Maintainer Mohammed Sedki <mohammed.sedki@u-psud.fr>
Description Modelling Multivariate Binary Data with Blocks of Specific One-Factor Distribution. Variables are grouped into independent blocks. Each variable is described by two continuous parameters (its marginal probability and its dependency strength with the other block variables), and one binary parameter (positive or negative dependency). Model selection consists in the estimation of the repartition of the variables into blocks. It is carried out by the maximization of the BIC criterion by a deterministic (faster) algorithm or by a stochastic (more time consuming but optimal) algorithm. Tool functions facilitate the model interpretation.
License GPL (>= 2)
Imports methods, mgcv, parallel
Depends R (>= 3.0.2)
Repository CRAN
Repository/R-Forge/Project mvbinary
Repository/R-Forge/Revision 31
Repository/R-Forge/DateTimeStamp 2016-12-14 14:16:05
Date/Publication 2016-12-15 16:46:38
NeedsCompilation no

R topics documented:

MvBinary-package .. 2
ComputeEmpiricCramer ... 3
ComputeMvBinaryCramer ... 3
MvBinaryEstim .. 4
Description

MvBinary is a tool for fitting the distribution of correlated multivariate binary data.

Details

<table>
<thead>
<tr>
<th>Package</th>
<th>MvBinary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Package</td>
</tr>
<tr>
<td>Version</td>
<td>1.0.0</td>
</tr>
<tr>
<td>Date</td>
<td>2015-11-03</td>
</tr>
<tr>
<td>License</td>
<td>GPL-2</td>
</tr>
<tr>
<td>LazyLoad</td>
<td>yes</td>
</tr>
</tbody>
</table>

Author(s)

Author: Marbac M., and Sedki S.

References

Examples

```r
# Package loading
rm(list=ls())
require(MvBinary)

# Data loading
data(MvBinaryExample)

# Parameter estimation by the HAC-based algorithm on 2 cores
# where the EM algorithms are initialized 10 times
```
ComputeEmpiricCramer

Description
This function computes the Empiric Cramer’s V for a binary data set.

Usage
ComputeEmpiricCramer(x)

Arguments
x
a binary matrix.

Value
Return the matrix of the Empiric Cramer’s V.

ComputeMvBinaryCramer

Description
This function computes the model Cramer’s V for a binary data set.

Usage
ComputeMvBinaryCramer(results)

Arguments
results
an instance of S4 class MvBinaryResult (provided by the function MvBinaryEstim)

Value
Return the matrix of the Empiric Cramer’s V.
MvBinaryEstim

Create an instance of the [MvBinaryResult] class

Description

This function performs the model selection and the parameter inference.

Usage

MvBinaryEstim(x, nbcores = 1, algorithm = "HAC", modelslist = NULL,
tol.EM = 0.01, nbinit.EM = 40, nbiter.MH = 50, nbchains.MH = 10)

Arguments

x matrix of the binary observation.
nbcores number of cores used for the model selection (only for Linux). Default is 1.
algorithm algorithm used for the model selection ("HAC": deterministic algorithm based on the HAC of the variables, "MH": stochastic algorithm for optimizing the BIC criterion, "List": comparison of the models provided by the users). Default is "HAC".
modelslist list of models provided by the user (only used when algorithm="List"). Default is NULL
tol.EM stopping criterion for the EM algorithm. Default is 0.01
nbinit.EM number of random initializations for the EM algorithm. Default is 40.
nbiter.MH number of successive iterations without finding a model having a better BIC criterion which involves the stopping of the Metropolis-Hastings algorithm (only used when algorithm="MH"). Default is 50.
nbchains.MH number of random initializations for the stochastic algorithm (only used when algorithm="MH"). Default is 10.

Value

Returns an instance of the [MvBinaryResult] class.

Examples

Data loading
data(MvBinaryExample)

Parameter estimation by the HAC-based algorithm on 2 cores
where the EM algorithms are initialized 10 times
res.CAH <- MvBinaryEstim(MvBinaryExample, 2, nbinit.EM = 10)

Parameter estimation for two competing models
res.CAH <- MvBinaryEstim(MvBinaryExample, algorithm="List",
modelslist=list(c(1,1,2,2,3,4), c(1,1,1,2,2,2)), nbinit.EM = 10)
Summary of the estimated model
summary(res.CAH)

Print the parameters of the estimated model
print(res.CAH)

MvBinaryExample

Simulated binary data: MvBinaryExample

Description

The file MvBinaryExample.rda describes 400 individuals by 6 binary variables.

Format

A matrix with 400 observations on the 6 variables.

Details

This data set has been simulated from the MvBinary model. The first three variables are dependent. The last three variables are dependent.

Examples

data(MvBinaryExample)

MvBinaryProbaPost

Computation of the model Cramer’s v.

Description

This function computes the model Cramer’s V for a binary data set.

Usage

MvBinaryProbaPost(x, param)

Arguments

- `x` a binary matrix.
- `param` an instance of S4 class MvBinaryResult (provided by the function MvBinaryEstim)

Value

Return the logprobability for each row of matrix x conditionally on the model defined by param.
MvBinaryResult-class Constructor of [MvBinaryResult] class

Description

This S4 class contains the results from the function MvBinaryEstim.

Details

- **alpha** numeric. It indicates the marginal probability of that each variables are equal to 1.
- **epsilon** numeric. It indicates the dependency strength of each variables (between 0 and 1) with the other block variables.
- **delta** binary. It indicates the kind of dependency: two variables affiliated into the same block are positively correlated if their delta are equal and they are negatively correlated otherwise.
- **blocks** numeric. It indicates the block of each variable.
- **nbparam** numeric. It indicates the number of continuous parameters.
- **loglike** numeric. The model likelihood.
- **bic** numeric. The model BIC.

Examples

getSlots("MvBinaryResult")

plants Real binary data: Plants

Description

The file plants.rda describes 35583 plants by indicating if they occur (1) or not (2) in 69 states of the North America.

Format

A matrix with 35583 observations on the 69 variables.

Details

This data set been extracted from the USA plants database, July 29, 2015.

Examples

data(plants)
print

Summary function.

Description

This function prints the parameters resulting from `MvBinaryEstim`.

Usage

```r
## S4 method for signature 'MvBinaryResult'
print(x)
```

Arguments

- `x` output object from `MvBinaryEstim`.

summary

Summary function.

Description

This function gives the summary of output from `MvBinaryEstim`.

Usage

```r
## S4 method for signature 'MvBinaryResult'
summary(object)
```

Arguments

- `object` output object from `MvBinaryEstim`.
Index

* datasets
 MvBinaryExample, 5
 plants, 6

* package
 MvBinary-package, 2

ComputeEmpiricCramer, 3
ComputeMvBinaryCramer, 3
MvBinary (MvBinary-package), 2
MvBinary-package, 2
MvBinaryEstim, 4, 6, 7
MvBinaryExample, 5
MvBinaryProbaPost, 5
MvBinaryResult, 4, 6
MvBinaryResult-class, 6

plants, 6
print, 7
print,MvBinaryResult-method (print), 7

summary, 7
summary,MvBinaryResult-method
 (summary), 7