Package ‘NGBVS’

January 16, 2020

Type Package

Title Bayesian Variable Selection for SNP Data using Normal-Gamma

Version 0.2.0

URL

Date 2020-01-16

Author Abdulaziz Alenazi [aut, cre]

Maintainer Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>

Depends R (>= 3.6.0)

Imports stats, Rfast

License GPL (>= 2)

NeedsCompilation no

Repository CRAN

Date/Publication 2020-01-16 11:10:14 UTC

R topics documented:

NGBVS-package ... 2
asym_m_ng .. 2
asym_s_ng .. 4
m_ng ... 5
Random value generation from the Generalized Inverse Gaussian Distribution .. 6
s_ng ... 7

Index 9
Bayesian Variable Selection for SNP Data using Normal-Gamma

Description

The NGBVS package provides posterior distribution of case-control fine-mapping. Specifically, Bayesian variable selection for Single-Nucleotide Polymorphism (SNP) data using the Normal-Gamma prior.

Details

Package: NG
Type: Package
Version: 0.2.0
Date: 2020-01-16
License: GPL-2

Maintainers

Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>

Author(s)

Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>

Usage

asym_m_ng (y, data, FS, medstar = c(0.01, 0.0001), numb = 100, burnin = 1, every = 1)
asym_m_ng

Arguments

y A vector of the phenotype, where takes 0s and 1s.
data An \(N \times p \) finemap data, where \(N \) and \(p \) denote the samples and number of SNPs respectively.
FS FS scores for each SNP and it takes value from 0 and 1 or NA for missing FS.
medstar The value of M where M takes two values.
numb Number of samples for each SNP.
burnin The amount of burn-in for the MCMC sample.
every The amount of thinning for the MCMC sample.

Value

A list including:

alpha A vector of the posterior distribution of the intercept.
beta A matrix of the posterior distribution of the effect sizes.
 psi A matrix of the posterior distribution of \(\psi \).
lambda A vector of the posterior distribution of \(\lambda \).
gammasq A vector of the posterior distribution of \(\gamma^2 \).
W A vector of the posterior distribution of \(W \).
H A vector of the posterior distribution of \(H \).

Author(s)

Abulaziz Alenazi

R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.

Examples

set.seed(1)
data <- matrix(sample(c(0, 1, 2), 500 * 30, replace = TRUE,
prob = c(0.35, 0.35, 0.3)), ncol = 30)
FS <- sample(c(0.1, 0.5, 0.7, NA), ncol(data), replace = TRUE)
asy_m_ng(y = rbinom(500, 1, 0.5), data = data, FS = FS)
asym_s_ng

Description

Standard Normal Gamma prior calculates the posterior distribution for the fine mapping cases-controls study. The number of case-controls must be greater than the number of SNPs.

Usage

asym_s_ng(y, data, medstar = 1, numb = 100, burnin = 1, every = 1)

Arguments

y A vector of the phenotype, where takes 0s and 1s.
data An $N \times p$ finemap data, where N and p denote the samples and number of SNPs respectively.
medstar The value of M.
numb Number of samples for each SNP.
burnin The amount of burn-in for the MCMC sample.
every The amount of thinning for the MCMC sample.

Value

A list including:

alpha A vector of the posterior distribution of the intercept.
beta A matrix of the posterior distribution of the effect sizes.
psi A matrix of the posterior distribution of ψ.
lambda A vector of the posterior distribution of λ.
gammasq A vector of the posterior distribution of γ^2.

Author(s)

Abulaziz Alenazi

R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.

Examples

set.seed(1)
data <- matrix(sample(c(0, 1, 2), 500 * 30, replace = TRUE, prob = c(0.35, 0.35, 0.3)), ncol = 30)
asym_s_ng(y = rbinom(500, 1, 0.5), data = data)
m_ng
Modified NG prior via FS scores.

Description
Modified Normal Gammmp prior calculates the posterior distribution for the fine mapping study. The number of individuals must be greater than the number of SNPs.

Usage
```r
m_ng(y, data, FS, medstar = c(0.01, 0.0001), numb = 100, burnin = 1, every = 1)
```

Arguments
- `y`: A vector of the phenotype.
- `data`: An $N \times p$ finemap data, where N and p denote the samples and number of SNPs respectively.
- `FS`: FS scores for each SNP and it takes value from 0 and 1 or NA for missing FS.
- `medstar`: The value of M where M takes two values.
- `numb`: Number of samples for each SNP.
- `burnin`: The amount of burn-in for the MCMC sample.
- `every`: The amount of thining for the MCMC sample.

Value
A list including:
- `alpha`: A vector of the posterior distribution of the intercept.
- `beta`: A matrix of the posterior distribution of the effect sizes.
- `sigma2`: A vector of the posterior distribution of σ^2.
- `psi`: A matrix of the posterior distribution of ψ.
- `lambda`: A vector of the posterior distribution of λ.
- `gamma2`: A vector of the posterior distribution of γ^2.
- `W`: A vector of the posterior distribution of W.
- `H`: A vector of the posterior distribution of H.

Author(s)
Abulaziz Alenazi
R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.
Examples

```r
set.seed(1)
data <- matrix(rnorm(500 * 30), ncol = 30)
FS <- sample(c(0.1, 0.5, 0.7, NA), ncol(data), replace = TRUE)
m_ng(y = rnorm(500), data = data, FS = FS)
```

Random value generation from the Generalized Inverse Gaussian Distribution

Description

Random value generation from the Generalized Inverse Gaussian (GIG) Distribution.

Usage

```r
rgig(n = 10, lambda = 1, chi = 1, psi = 1)
```

Arguments

- `n`: Number of observations.
- `lambda`: A shape and scale and parameter.
- `chi`: Shape parameter. Must be positive.
- `psi`: Scale parameter. Must be positive.

Details

`rgig` uses the code from the GIG-random number generator from the `R` package `fBasics`. I copied the code from the "ghyp" package because it had not longer a maintainer.

Value

A vector with random values from the GIG distribution.

Author(s)

David Luethi. Minor changes made by Abdulaziz Alenazi <a.alenazi@nbu.edu.sa>.

References

The algorithm for simulating generalized inverse gaussian variates is copied from the `R` package `fBasics` from Diethelm Wuertz.

s_ng

See Also

integrate, *unirroot*, *spline*

Examples

```r
x <- rgig(n = 10, lambda = 1, chi = 1, psi = 1)
```

Description

Standard Normal Gammp prior calculates the posterior distribution for the fine mapping study. The number of individuals must be greater than the number of SNPs.

Usage

```r
s_ng(y, data, medstar = 1, numb = 100, burnin = 1, every = 1)
```

Arguments

- `y`: A vector of the phenotype.
- `data`: An $N \times p$ finemap data, where N and p denote the samples and number of SNPs respectively.
- `medstar`: The value of M.
- `numb`: Number of samples for each SNP.
- `burnin`: The amount of burn-in for the MCMC sample.
- `every`: The amount of thining for the MCMC sample.

Value

A list including:

- `alpha`: A vector of the posterior distribution of the intercept.
- `beta`: A matrix of the posterior distribution of the effect sizes.
- `sigmasq`: A vector of the posterior distribution of σ^2.
- `psi`: A matrix of the posterior distribution of ψ.
- `lambda`: A vector of the posterior distribution of λ.
- `gammasq`: A vector of the posterior distribution of γ^2.

Author(s)

Abulaziz Alenazi

R implementation and documentation: Abulaziz Alenazi <a.alenazi@nbu.edu.sa>.
Examples

set.seed(1)
data <- matrix(rnorm(500 * 30), ncol = 30)
s_ng(y = rnorm(500), data = data)
Index

asym_m_ng, 2
asym_s_ng, 4
integrate, 7
m_ng, 5
NGBVS-package, 2

Random value generation from the Generalized Inverse Gaussian Distribution, 6
rgig(Random value generation from the Generalized Inverse Gaussian Distribution), 6

s_ng, 7
spline, 7

uniroot, 7