Package ‘OwenQ’

January 5, 2022

Type Package
Title Owen Q-Function
Version 1.0.5
Author Stéphane Laurent
Maintainer Stéphane Laurent <laurent_step@outlook.fr>

Description Evaluates the Owen Q-function for an integer value of the degrees of freedom, by applying Owen's algorithm (1965) [doi:10.1093/biomet/52.3-4.437].
It is useful for the calculation of the power of equivalence tests.

License BSD_3_clause + file LICENSE
Imports Rcpp (>= 0.12.10), stats
LinkingTo Rcpp, BH, RcppNumerical, RcppEigen
Suggests testthat, knitr, rmarkdown, mvtnorm
Encoding UTF-8
SystemRequirements C++11
RoxygenNote 7.0.2
VignetteBuilder knitr

URL https://github.com/stla/OwenQ
BugReports https://github.com/stla/OwenQ/issues
NeedsCompilation yes
Repository CRAN
Date/Publication 2022-01-05 15:00:02 UTC

R topics documented:

<table>
<thead>
<tr>
<th>OwenQ1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>OwenQ2</td>
<td>3</td>
</tr>
<tr>
<td>OwenT</td>
<td>4</td>
</tr>
<tr>
<td>powen</td>
<td>4</td>
</tr>
<tr>
<td>psbt</td>
<td>6</td>
</tr>
<tr>
<td>ptOwen</td>
<td>7</td>
</tr>
<tr>
<td>spowen2</td>
<td>8</td>
</tr>
</tbody>
</table>
Description

Evaluates the first Owen Q-function (integral from 0 to R) for an integer value of the degrees of freedom.

Usage

OwenQ1(nu, t, delta, R, algo = 2)

Arguments

- **nu**: integer greater than 1, the number of degrees of freedom
- **t**: number, positive or negative, possibly infinite
- **delta**: vector of finite numbers, with the same length as R
- **R**: (upper bound of the integral) vector of finite positive numbers, with the same length as delta
- **algo**: the algorithm, 1 or 2

Value

A vector of numbers between 0 and 1, the values of the integral from 0 to R.

Note

When the number of degrees of freedom is odd, the procedure resorts to the Owen T-function (OwenT).

References

Examples

As R goes to Inf, OwenQ1(nu, t, delta, R) goes to pt(t, nu, delta):
OwenQ1(nu=5, t=3, delta=2, R=100)
pt(q=3, df=5, ncp=2)
Description

Evaluates the second Owen Q-function (integral from \(R \) to \(\infty \)) for an integer value of the degrees of freedom.

Usage

\[
\text{OwenQ2}(\nu, t, \delta, R, \text{algo} = 2)
\]

Arguments

- \(\nu \): integer greater than 1, the number of degrees of freedom
- \(t \): number, positive or negative, possibly infinite
- \(\delta \): vector of finite numbers, with the same length as \(R \)
- \(R \): (lower bound of the integral) vector of finite positive numbers, with the same length as \(\delta \)
- \(\text{algo} \): the algorithm used, 1 or 2

Value

A vector of numbers between 0 and 1, the values of the integral from \(R \) to \(\infty \).

Note

When the number of degrees of freedom is odd, the procedure resorts to the Owen T-function (\(OwenT \)).

References

Examples

OwenQ1(\(\nu \), t, \(\delta \), \(R \)) + OwenQ2(\(\nu \), t, \(\delta \), \(R \)) equals pt(t, \(\nu \), \(\delta \)):
OwenQ1(\(\nu = 5 \), t=3, \(\delta = 2 \), \(R = 1 \)) + OwenQ2(\(\nu = 5 \), t=3, \(\delta = 2 \), \(R = 1 \))
\[pt(q=3, df=5, ncp=2) \]
OwenT | Owen T-function

Description
Evaluates the Owen T-function.

Usage
OwenT(h, a)

Arguments
- h: numeric scalar
- a: numeric scalar

Details
This is a port of the function owens_t of the \texttt{boost} collection of C++ libraries.

Value
A number between 0 and 0.25.

References

Examples
\begin{verbatim}
integrate(function(x) pnorm(1+2*x)^2*dnorm(x), lower=-Inf, upper=Inf)
pnorm(1/sqrt(5)) - 2*OwenT(1/sqrt(5), 1/3)
\end{verbatim}

powen | Owen distribution functions when $\delta_1 > \delta_2$

Description
Evaluates the Owen distribution functions when the noncentrality parameters satisfy $\delta_1 > \delta_2$ and the number of degrees of freedom is integer.

- powen1 evaluates $P(T_1 \leq t_1, T_2 \leq t_2)$ (Owen’s equality 8)
- powen2 evaluates $P(T_1 \leq t_1, T_2 > t_2)$ (Owen’s equality 9)
- powen3 evaluates $P(T_1 > t_1, T_2 > t_2)$ (Owen’s equality 10)
- powen4 evaluates $P(T_1 > t_1, T_2 \leq t_2)$ (Owen’s equality 11)
Usage
powen1(nu, t1, t2, delta1, delta2, algo = 2)
powen2(nu, t1, t2, delta1, delta2, algo = 2)
powen3(nu, t1, t2, delta1, delta2, algo = 2)
powen4(nu, t1, t2, delta1, delta2, algo = 2)

Arguments
nu integer greater than 1, the number of degrees of freedom; infinite allowed
t1, t2 two numbers, positive or negative, possible infinite
delta1, delta2 two vectors of possibly infinite numbers with the same length, the noncentrality parameters; must satisfy delta1>delta2
algo the algorithm used, 1 or 2

Value
A vector of numbers between 0 and 1, possibly containing some NaN.

Note
When the number of degrees of freedom is odd, the procedure resorts to the Owen T-function (OwenT).

References

See Also
Use `psbt` for general values of delta1 and delta2.

Examples
\[
\text{nu=5; t1=2; t2=1; delta1=3; delta2=2}
\]
Wolfram integration gives 0.1394458271284726
(p1 <- powen1(nu, t1, t2, delta1, delta2))
Wolfram integration gives 0.0353568969628651
(p2 <- powen2(nu, t1, t2, delta1, delta2))
Wolfram integration gives 0.806507459306199
(p3 <- powen3(nu, t1, t2, delta1, delta2))
Wolfram integration gives 0.018689824158
(p4 <- powen4(nu, t1, t2, delta1, delta2))
the sum should be 1
p1+p2+p3+p4
psbt

Owen distribution functions

Description

Evaluates the Owen cumulative distribution function for an integer number of degrees of freedom.

- psbt1 evaluates \(P(T_1 \leq t_1, T_2 \leq t_2) \)
- psbt2 evaluates \(P(T_1 \leq t_1, T_2 > t_2) \)
- psbt3 evaluates \(P(T_1 > t_1, T_2 > t_2) \)
- psbt4 evaluates \(P(T_1 > t_1, T_2 \leq t_2) \)

Usage

psbt1(nu, t1, t2, delta1, delta2, algo = 2)
psbt2(nu, t1, t2, delta1, delta2, algo = 2)
psbt3(nu, t1, t2, delta1, delta2, algo = 2)
psbt4(nu, t1, t2, delta1, delta2, algo = 2)

Arguments

nu integer greater than 1, the number of degrees of freedom; infinite allowed
t1, t2 two numbers, positive or negative, possibly infinite
delta1, delta2 two vectors of possibly infinite numbers with the same length, the noncentrality parameters
algo the algorithm used, 1 or 2

Value

A vector of numbers between 0 and 1, possibly containing some NaN.

Note

When the number of degrees of freedom is odd, the procedure resorts to the Owen T-function (OwenT).

References

See Also

It is better to use powen if delta1>delta2.
Examples
nu=5; t1=1; t2=2; delta1=2; delta2=3
(p1 <- psbt1(nu, t1, t2, delta1, delta2))
(p2 <- psbt2(nu, t1, t2, delta1, delta2))
(p3 <- psbt3(nu, t1, t2, delta1, delta2))
(p4 <- psbt4(nu, t1, t2, delta1, delta2))
the sum should be 1
p1+p2+p3+p4

ptOwen

Student CDF with integer number of degrees of freedom

Description
Cumulative distribution function of the noncentral Student distribution with an integer number of
degrees of freedom.

Usage
ptOwen(q, nu, delta = 0)

Arguments
q quantile, a finite number
nu integer greater than 1, the number of degrees of freedom; possibly infinite
delta numeric vector of noncentrality parameters; possibly infinite

Value
Numeric vector, the CDF evaluated at q.

Note
The results are theoretically exact when the number of degrees of freedom is even. When odd, the
procedure resorts to the Owen T-function.

References

Examples
ptOwen(2, 3) - pt(2, 3)
ptOwen(2, 3, delta=1) - pt(2, 3, ncp=1)
spowen2 Special case of second Owen distribution function

Description
Evaluation of the second Owen distribution function in a special case (see details).

Usage
spowen2(nu, t, delta, algo = 2)

Arguments
nu positive integer, possibly infinite
 t positive number
 delta vector of positive numbers
 algo the algorithm used, 1 or 2

Details
The value of spowen2(nu, t, delta) is the same as the value of powen2(nu, t, -t, delta, -delta).
but it is evaluated more efficiently.

Value
A vector of numbers between 0 and 1.

See Also
powen2

Examples
spowen2(4, 1, 2) == powen2(4, 1, -1, 2, -2)
Index

OwenQ1, 2
OwenQ2, 3
OwenT, 2, 3, 4, 5, 6

powen, 4, 6
powen1 (powen), 4
powen2, 8
powen2 (powen), 4
powen3 (powen), 4
powen4 (powen), 4
psbt, 5, 6
psbt1 (psbt), 6
psbt2 (psbt), 6
psbt3 (psbt), 6
psbt4 (psbt), 6
ptOwen, 7

spowen2, 8