Package ‘PINSPlus’

December 14, 2021

Encoding UTF-8
Type Package
Title Clustering Algorithm for Data Integration and Disease Subtyping
Version 2.0.6
Date 2021-12-13
Author Hung Nguyen, Bang Tran, Duc Tran and Tin Nguyen
Maintainer Hung Nguyen <hungnp@nevada.unr.edu>
Description Provides a robust approach for omics data integration and disease subtyping. PIN-SPlus is fast and supports the analysis of large datasets with hundreds of thousands of samples and features. The software automatically determines the optimal number of clusters and then partitions the samples in a way such that the results are robust against noise and data perturbation (Nguyen et al. (2019) <DOI:10.1093/bioinformatics/bty1049>, Nguyen et al. (2017)<DOI:10.1101/gr.215129.116>, Nguyen et al. (2021)<DOI:10.3389/fonc.2021.725133>).
License LGPL
Depends R (>= 2.10)
Imports foreach, entropy, doParallel, matrixStats, Rcpp, RcppParallel, FNN, cluster, irlba, mclust, impute
RoxygenNote 7.1.0
Suggests knitr, rmarkdown, survival, markdown
LinkingTo Rcpp, RcppArmadillo, RcppParallel
VignetteBuilder knitr
NeedsCompilation yes
Repository CRAN
Date/Publication 2021-12-14 19:40:02 UTC

R topics documented:

PINSPlus-package ... 2
AML2004 ... 2
KIRC ... 3
PerturbationClustering .. 4
SubtypingOmicsData ... 9
Description

This package implements clustering algorithms proposed by Nguyen et al. (2017, 2019). Perturbation Clustering for data INtegration and disease Subtyping (PINS) is an approach for integration of data and classification of diseases into various subtypes. PINS+ provides algorithms supporting both single data type clustering and multi-omics data type. PINSPlus is an improved version of PINS by allowing users to customize the base clustering algorithm and perturbation methods. Furthermore, PINSPlus is fast and supports the analysis of large datasets with millions of samples and features.

Details

PINS+ provides `PerturbationClustering` and `SubtypingOmicsData` functions for single data type clustering and multi-omics data type clustering. PINS makes use of different clustering algorithms such as `kmeans` and `pam` to perform clustering actions. The principle of PINS is to find the optimum number of clusters and location of each sample in the clusters based on perturbation methods such as `noise` or `subsampling`. PINS+ allows users to pass their own clustering algorithm and perturbation method.

References

See Also

`PerturbationClustering`, `SubtypingOmicsData`

AML2004

Acute myelogenous leukemia dataset

Description

Acute myelogenous leukemia dataset

Format

A list containing properties:
KIRC

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene</td>
<td>data.frame</td>
<td>mRNA expression data</td>
</tr>
<tr>
<td>Group</td>
<td>data.frame</td>
<td>Data frame indicating the cluster to which each sample is allocated</td>
</tr>
</tbody>
</table>

Source

https://www.pnas.org/content/101/12/4164

References

KIRC

Kidney renal clear cell carcinoma dataset

Description

The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma (TCGA-KIRC) data collection is part of a larger effort to build a research community focused on connecting cancer phenotypes to genotypes by providing clinical images matched to subjects from The Cancer Genome Atlas (TCGA). Clinical, genetic, and pathological data resides in the Genomic Data Commons (GDC) Data Portal while the radiological data is stored on The Cancer Imaging Archive (TCIA).

This embed version of KIRC in PINPlus package is the reduced version of KIRC using Principle Component Analysis.

Format

A list containing properties:

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>data.frame</td>
<td>mRNA expression data</td>
</tr>
<tr>
<td>ME</td>
<td>data.frame</td>
<td>DNA Methylation data</td>
</tr>
<tr>
<td>MI</td>
<td>data.frame</td>
<td>miRNA expression data</td>
</tr>
<tr>
<td>survival</td>
<td>data.frame</td>
<td>Clinical survival data</td>
</tr>
</tbody>
</table>

Source

https://wiki.cancerimagingarchive.net/display/Public/TCGA-KIRC

References

Akin, O., Elnajjar, P., Heller, M., Jarosz, R., Erickson, B. J., Kirk, S., ... Filippini, J. (2016). Radiology Data from The Cancer Genome Atlas Kidney Renal Clear Cell Carcinoma [TCGA-
PerturbationClustering

KIRC\ collection. The Cancer Imaging Archive.

PerturbationClustering

Perturbation clustering

Description

Perform subtyping using one type of high-dimensional data

Usage

PerturbationClustering(
 data,
 kMin = 2,
 kMax = 5,
 k = NULL,
 verbose = T,
 ncore = 1,
 clusteringMethod = \"kmeans\",
 clusteringFunction = NULL,
 clusteringOptions = NULL,
 perturbMethod = \"noise\",
 perturbFunction = NULL,
 perturbOptions = NULL,
 PCAFunction = NULL,
 iterMin = 20,
 iterMax = 200,
 madMin = 0.001,
 msdMin = 1e-06,
 sampledSetSize = 2000,
 knn.k = NULL
)

Arguments

data
 Input matrix. The rows represent items while the columns represent features.

kMin
 The minimum number of clusters used for automatically detecting the number
 of clusters. Default value is 2.

kMax
 The maximum number of clusters used for automatically detecting the number
 of clusters. Default value is 5.

k
 The number of clusters. If k is set then kMin and kMax will be ignored.

verbose
 Boolean value indicating the algorithm to run with or without logging. Default
 value is TRUE.

ncore
 Number of cores that the algorithm should use. Default value is 1.
PerturbationClustering

clusteringMethod
The name of built-in clustering algorithm that PerturbationClustering will use. Currently supported algorithms are kmeans, pam and hclust. Default value is "kmeans".

clusteringFunction
The clustering algorithm function that will be used instead of built-in algorithms.

clusteringOptions
A list of parameters will be passed to the clustering algorithm in clusteringMethod.

perturbMethod
The name of built-in perturbation method that PerturbationClustering will use, currently supported methods are noise and subsampling. Default value is "noise".

perturbFunction
The perturbation method function that will be used instead of built-in ones.

perturbOptions
A list of parameters will be passed to the perturbation method in perturbMethod.

PCAFunction
The customized PCA function that users can manually define.

iterMin
The minimum number of iterations. Default value is 20.

iterMax
The maximum number of iterations. Default value is 200.

madMin
The minimum of Mean Absolute Deviation of AUC of Connectivity matrix for each k. Default value is 1e-03.

msdMin
The minimum of Mean Square Deviation of AUC of Connectivity matrix for each k. Default value is 1e-06.

sampledSetSize
The number of sample size used for the sampling process when dataset is big. Default value is 2000.

knn.k
The value of k of the k-nearest neighbors algorithm. If knn.k is not set then it will be used the elbow method to calculate k.

Details

PerturbationClustering implements the Perturbation Clustering algorithm of Nguyen et al. (2017), Nguyen et al. (2019), and Nguyen et al. (2021). It aims to determine the optimum cluster number and location of each sample in the clusters in an unsupervised analysis.

PerturbationClustering takes input as a numerical matrix or data frame of items as rows and features as columns. It uses a clustering algorithm as the base algorithm. Current built-in algorithms that users can use directly are kmeans, pam and hclust. The default parameters for built-in kmeans are nstart = 20 and iter.max = 1000. Users can change the parameters of built-in clustering algorithm by passing the value into clusteringOptions.

PerturbationClustering allows users to pass their own clustering algorithm instead of using built-in ones by using clusteringFunction parameter. Once clusteringFunction is specified, clusteringMethod will be skipped. The value of clusteringFunction must be a function that takes two arguments: data and k, where data is a numeric matrix or data frame containing data that need to be clustered, and k is the number of clusters. clusteringFunction must return a vector of labels indicating the cluster to which each sample is allocated.

PerturbationClustering uses a perturbation method to perturb clustering input data. There are two built-in methods are noise and subsampling that users can use directly by passing to perturbMethod.
Parameter. Users can change the default value of built-in perturbation methods by passing new value into `perturbOptions`:

1. Noise perturbation method takes two arguments: `noise` and `noisePercent`. The default values are `noise = NULL` and `noisePercent = "median"`. If `noise` is specified, `noisePercent` will be skipped.
2. Subsampling perturbation method takes one argument `percent` which has default value of 80.

Users can also use their own perturbation methods by passing them into `perturbFunction`. Once `perturbFunction` is specified, `perturbMethod` will be skipped. The value of `perturbFunction` must be a function that takes one argument `data` - a numeric matrix or data frame containing data that need to be perturbed. `perturbFunction` must return an object list which is as follows:

1. `data`: the perturbed data
2. `ConnectivityMatrixHandler`: a function that takes three arguments: `connectivityMatrix` - the connectivity matrix generated after clustering returned data, `iter` - the current iteration and `k` - the number of cluster. This function must return a compatible connectivity matrix with the original connectivity matrix. This function aims to correct the `connectivityMatrix` if needed and returns the corrected version.
3. `MergeConnectivityMatrices`: a function that takes four arguments: `oldMatrix`, `newMatrix`, `k`, and `iter`. The `oldMatrix` and `newMatrix` are two connectivity matrices that need to be merged, `k` is the cluster number and `iter` is the current number of iteration. This function must return a connectivity matrix that is merged from `oldMatrix` and `newMatrix`.

The parameters `sampledSetSize` and `knn.k` are used for subsampling procedure when clustering big data. Please consult Nguyen et al. (2021) for details.

Value

`PerturbationClustering` returns a list with at least the following components:

- `k`: The optimal number of clusters
- `cluster`: A vector of labels indicating the cluster to which each sample is allocated
- `origS`: A list of original connectivity matrices
- `pertS`: A list of perturbed connectivity matrices

References

See Also

`kmeans`, `pam`
Examples

```r
# Load the dataset AML2004
data(AML2004)
data <- as.matrix(AML2004$Gene)
# Perform the clustering
result <- PerturbationClustering(data = data)

# Plot the result
condition = seq(unique(AML2004$Group[, 2]))
names(condition) <- unique(AML2004$Group[, 2])
plot(
  prcomp(data)$x,
  col = result$cluster,
  pch = condition[AML2004$Group[, 2]],
  main = "AML2004"
)
legend(
  "bottomright",
  legend = paste("Cluster ", sort(unique(result$cluster)), sep = ""),
  fill = sort(unique(result$cluster))
)
legend("bottomleft", legend = names(condition), pch = condition)

# Change kmeans parameters
result <- PerturbationClustering(
  data = data,
  clusteringMethod = "kmeans",
  clusteringOptions = list(
    iter.max = 500,
    nstart = 50
  )
)

# Change to use pam
result <- PerturbationClustering(data = data, clusteringMethod = "pam")

# Change to use hclust
result <- PerturbationClustering(data = data, clusteringMethod = "hclust")

# Pass a user-defined clustering algorithm
result <- PerturbationClustering(data = data, clusteringFunction = function(data, k){
  # this function must return a vector of cluster
  kmeans(x = data, centers = k, nstart = k*10, iter.max = 2000)$cluster
})

# Use noise as the perturb method
result <- PerturbationClustering(data = data,
  perturbMethod = "noise",
  perturbOptions = list(noise = 0.3))

# or
result <- PerturbationClustering(data = data,
  perturbMethod = "noise",
  perturbOptions = list(noise = 0.3))
```
perturbMethod = "noise",
perturbOptions = list(noisePercent = 10))

Change to use subsampling
result <- PerturbationClustering(data = data,
perturbMethod = "subsampling",
perturbOptions = list(percent = 90))

Users can pass their own perturb method
result <- PerturbationClustering(data = data, perturbFunction = function(data){
 rowNum <- nrow(data)
colNum <- ncol(data)
epsilon <-
 matrix(
 data = rnorm(rowNum * colNum, mean = 0, sd = 1.234),
 nrow = rowNum,
 ncol = colNum
)
list(
 data = data + epsilon,
 ConnectivityMatrixHandler = function(connectivityMatrix, ...) {
 connectivityMatrix
 },
 MergeConnectivityMatrices = function(oldMatrix, newMatrix, iter, ...){
 return((oldMatrix*(iter-1) + newMatrix)/iter)
 }
)
})

Clustering on simulation data
Load necessary library
if (!require("mclust")) install.packages("mclust")
library(mclust)
library(irlba)

#Generate a simulated data matrix with the size of 50,000 x 5,000
sampleNum <- 50000 # Number of samples
geneNum <- 5000 # Number of genes
subtypeNum <- 3 # Number of subtypes

Generate expression matrix
exprs <- matrix(rnorm(sampleNum*geneNum, 0, 1), nrow = sampleNum, ncol = geneNum)
rownames(exprs) <- paste0("S", 1:sampleNum) # Assign unique names for samples

Generate subtypes
group <- sort(rep(1:subtypeNum, sampleNum/subtypeNum + 1)[1:sampleNum])
names(group) <- rownames(exprs)

Make subtypes separate
for (i in 1:subtypeNum) {
 exprs[group == i, 1:100 + 100*(i-1)] <- exprs[group == i, 1:100 + 100*(i-1)] + 2
SubtypingOmicsData

Plot the data
library(irlba)
exprs.pca <- irlba::prcomp_irlba(exprs, n = 2)$x
plot(exprs.pca, main = "PCA")

Run PINSPlus clustering:
set.seed(1)
t1 <- Sys.time()
result <- PerturbationClustering(data = exprs.pca, ncore = 1)
t2 <- Sys.time()

Print out the running time:

time <- t2 - t1

Print out the number of clusters:
result$k

Get cluster assignment
subtype <- result$cluster

Here we assess the clustering accuracy using Adjusted Rand Index (ARI).
ARI takes values from -1 to 1 where 0 stands for a random clustering and 1
stands for a perfect partition result.
if (!require("mclust")) install.packages("mclust")
library(mclust)
ari <- mclust::adjustedRandIndex(subtype, group)

Plot the cluster assignments
colors <- as.numeric(as.character(factor(subtype)))
plot(exprs.pca, col = colors, main = "Cluster assignments for simulation data")

legend("topright", legend = paste("ARI: ", ari))

legend("bottomright", fill = unique(colors),
legend = paste("Group ",
levels(factor(subtype)), ": ",
table(subtype)[levels(factor(subtype)], sep = " ")

SubtypingOmicsData Subtyping multi-omics data
Description

Perform subtyping using multiple types of data

Usage

```r
SubtypingOmicsData(
  dataList,
  kMin = 2,
  kMax = 5,
  k = NULL,
  agreementCutoff = 0.5,
  ncore = 1,
  verbose = T,
  sampledSetSize = 2000,
  knn.k = NULL,
  ...
)
```

Arguments

- `dataList`: a list of data matrices. Each matrix represents a data type where the rows are items and the columns are features. The matrices must have the same set of items.

- `kMin`: The minimum number of clusters used for automatically detecting the number of clusters in `PerturbationClustering`. This parameter is passed to `PerturbationClustering` and does not affect the final number of cluster in `SubtypingOmicsData`. Default value is 2.

- `kMax`: The maximum number of clusters used for automatically detecting the number of clusters in `PerturbationClustering`. This parameter is passed to `PerturbationClustering` and does not affect the final number of cluster in `SubtypingOmicsData`. Default value is 5.

- `k`: The number of clusters. If `k` is set then `kMin` and `kMax` will be ignored.

- `agreementCutoff`: agreement threshold to be considered consistent. Default value is 0.5.

- `ncore`: Number of cores that the algorithm should use. Default value is 1.

- `verbose`: set it to `TRUE` or `FALSE` to get more or less details respectively.

- `sampledSetSize`: The number of sample size used for the sampling process when dataset is big. Default value is 2000.

- `knn.k`: The value of k of the k-nearest neighbors algorithm. If `knn.k` is not set then it will be used elbow method to calculate the k.

- `...`: these arguments will be passed to `PerturbationClustering` algorithm. See details for more information
Details

SubtypingOmicsData implements the Subtyping multi-omic data that are based on Perturbation clustering algorithm of Nguyen et al (2017), Nguyen et al (2019) and Nguyen, et al. (2021). The input is a list of data matrices where each matrix represents the molecular measurements of a data type. The input matrices must have the same number of rows. SubtypingOmicsData aims to find the optimum number of subtypes and location of each sample in the clusters from integrated input data dataList through two processing stages:

1. Stage I: The algorithm first partitions each data type using the function PerturbationClustering. It then merges the connectivities across data types into similarity matrices. Both kmeans and similarity-based clustering algorithms - partitioning around medoids pam are used to partition the built similarity. The algorithm returns the partitioning that agrees the most with individual data types.
2. Stage II: The algorithm attempts to split each discovered group if there is a strong agreement between data types, or if the subtyping in Stage I is very unbalanced.

When clustering a large number of samples, this function uses a subsampling technique to reduce the computational complexity with the two parameters sampledSetSize and knn.k. Please consult Nguyen et al. (2021) for details.

Value

SubtypingOmicsData returns a list with at least the following components:

- `cluster1`: A vector of labels indicating the cluster to which each sample is allocated in Stage I.
- `cluster2`: A vector of labels indicating the cluster to which each sample is allocated in Stage II.
- `dataTypeResult`: A list of results for individual data type. Each element of the list is the result of the PerturbationClustering for the corresponding data matrix provided in dataList.

References

See Also

PerturbationClustering
Examples

Load the kidney cancer carcinoma data
data(KIRC)

Perform subtyping on the multi-omics data
dataList <- list(as.matrix(KIRC$GE), as.matrix(KIRC$ME), as.matrix(KIRC$MI))
names(dataList) <- c("GE", "ME", "MI")
result <- SubtypingOmicsData(dataList = dataList)

Change Pertubation clustering algorithm's arguments
result <- SubtypingOmicsData(
 dataList = dataList,
 clusteringMethod = "kmeans",
 clusteringOptions = list(nstart = 50)
)

Plot the Kaplan-Meier curves and calculate Cox p-value
library(survival)
cluster1=result$cluster1;cluster2=result$cluster2
a <- intersect(unique(cluster2), unique(cluster1))
names(a) <- intersect(unique(cluster2), unique(cluster1))
a[setdiff(unique(cluster2), unique(cluster1))] <- seq(setdiff(unique(cluster2), unique(cluster1)))
+ max(cluster1)

colors <- a[levels(factor(cluster2))]
coxFit <- coxph(
 Surv(time = Survival, event = Death) ~ as.factor(cluster2),
 data = KIRC$survival,
 ties = "exact"
)
mfit <- survfit(Surv(Survival, Death == 1) ~ as.factor(cluster2), data = KIRC$survival)
plot(
 mfit, col = colors,
 main = "Survival curves for KIRC, level 2",
 xlab = "Days", ylab = "Survival", lwd = 2
)
legend("bottomright",
 legend = paste(
 "Cox p-value: ",
 round(summary(coxFit)$sctest[3], digits = 5),
 sep = "",
),
)
legend("bottomleft",
 fill = colors,
 legend = paste(
 "Group ",
 levels(factor(cluster2)),": ", table(cluster2)[levels(factor(cluster2))],
 sep = "",
),
)
Index

* datasets
 AML2004, 2
 KIRC, 3
* package
 PINSPlus-package, 2

AML2004, 2
KIRC, 3
kmeans, 6

pam, 6
PerturbationClustering, 2, 4, 11
PINSPlus (PINSPlus-package), 2
PINSPlus-package, 2

SubtypingOmicsData, 2, 9