Package ‘PO.EN’

August 19, 2020

Type Package

Title An Elastic-Net Regularized Presence-Only Model

Version 1.0

Date 2020-07-22

Maintainer Zikun Yang <yangzikun1125@gmail.com>

Description Presence-only model with Elastic Net penalty is a regularized generalized linear model training on the presence-absence response. This package provides functions for tuning and fitting the presence-only model. The presence-only model can be used to predict regulatory effects of genetic variants at sequence-level resolution by integrating a large number of epigenetic features and massively parallel reporter assays (MPRAs).

Depends R (>= 3.1.0)

License GPL (>= 2)

Encoding UTF-8

Imports Rcpp, PUnlasso, glmnet, pROC

LinkingTo Rcpp, RcppArmadillo

RoxygenNote 7.1.0.9000

NeedsCompilation yes

Author Zikun Yang [aut, cre, cph],
Chen Wang [ctb],
Iuliana Ionita-Laza [aut, ctb]

Repository CRAN

Date/Publication 2020-08-19 08:40:05 UTC

R topics documented:

PO.EN-package .. 2
cv.PO.EN .. 3
example.data ... 4
PO.EN ... 5
PO.EN.predict .. 6
sum_compute_single_rcpp ... 6
Description

This package fits a presence-only model with elastic-net penalty using coordinate descent. This package also provides a feature of tuning the prevalence parameter through a two-dimensional cross-validation. The package can be used in genetics study mainly for predicting regulatory effects of genetic variants given a large number of epigenetic features.

Details

Accept typical presence-only response vector y, a vector consisted of presence and background observations, and design matrix x. Three main functions:

- `cv.PO.EN` The cross-validation tuning function
- `PO.EN` The main model-fitting function
- `PO.EN.predict` The predicting function

Author(s)

Zikun Yang, Chen Wang, Iuliana Ionita-Laza
Maintainer: Zikun Yang <yangzikun1125@gmail.com>

References

Zikun Yang, Chen Wang, Iuliana Ionita-Laza. A robust presence-only model to predict regulatory effects of genetic variants at single nucleotide resolution by integrating epigenetic information and massively parallel reporter assays. 2020

Examples

```r
data(example.data) # example training dataset, including training dataset and testing dataset
train_data<-example.data$train.data
y_train=train_data$response;x_train=train_data[,,-1] # response and design matrix of training data
test_data<-example.data$test.data
y_test=test_data$response;x_test=test_data[,,-1] # response and design matrix of testing data
PO.EN.cv<-cv.PO.EN(x_train,y_train,input.pi=seq(0.01,0.4,length.out=4))

PO.EN.beta<-PO.EN(x_train,y_train,lambda=PO.EN.cv$lambda.min,
                   true.prob=PO.EN.cv$pi,beta_start=rep(0,ncol(x_train)+1))
predictions<-PO.EN.predict(x_test,PO.EN.beta)
pROC::roc(y_test~predictions)
```
Cross-validation function of PO-EN model

Description

Does k-fold cross-validation for PO-EN, produces a pair values of lambda and the prevalence parameter for an optimal fitting.

Usage

cv.PO.EN(X, Y, alpha=0.5, o.iter=5, i.iter=20, epsilon=1e-4, nfolds=10, type.measure='deviance', depth=100, input.pi=0.5, a=sqrt(0.5), seed=1)

Arguments

X
Input design matrix. Should not include the intercept vector.

Y
Response variable. Should be a binary vector.

alpha
The elastic net mixing parameter, with $0 \leq \alpha \leq 1$.

o.iter
Number of outer loop iteration.

i.iter
Number of inner loop iteration.

epsilon
The threshold for stopping the coordinate descent algorithm.

nfolds
The number of folds for applying cross validation. The default setting is 10. The number of presence observations must be a multiple of nfolds.

type.measure
The loss function to use for tuning lambda. The default is type.measure='deviance'. Other choices include AUROC (type.measure='auc') and F measure (type.measure='F.measure').

depth
The ratio between the largest lambda and the smallest lambda of the candidate sequence of lambda.

input.pi
The user-supplied prevalence sequence.

a
The parameter of F measure for tuning the true prevalence, the default value is $\sqrt{0.5}$.

seed
A single value used for random number generation of the functions.

Details

The cross-validation function runs a n-folds cross-validation for selecting an optimal pair of lambda and the prevalence parameter. The default setting is 10-folds cross validation. The candidate sequence of lambda is automatically generated by the function based on a warm start. The values of input.pi should be supplied by users.
Value

lambda.min value of lambda that returns the minimum (or maximum, depending on type.measure) of mean cross-validated error.

lambda.1se largest value of lambda such that error is within 1 standard error of the minimum.

pi value of the prevalence parameter that returns maximum F measure.

Examples

data(example.data) # example datasets, including training dataset and testing dataset
train_data<-example.data$train.data
y_train=train_data$response;x_train=train_data[,,-1] # response and design matrix of training data
PO.EN.cv<-cv.PO.EN(x_train,y_train,input.pi=seq(0.01,0.4,length.out=4))

PO.EN.beta<-PO.EN(x_train,y_train,lambdas=PO.EN.cv$lambda.min,
true.prob=PO.EN.cv$pi,beta_start=rep(0,ncol(x_train)+1))

example.data Example datasets

Description

This data list, example.data, includes three datasets generated based on Saturation mutagenesis results (M. Kircher, et al.,2019) and the DeepSEA features (Zhou & Troyanskaya, 2015). The training and testing datasets in the data list include binary response vectors, which are truncations of the P values of tissue K562 from the Saturation mutagenesis results, and reduced versions of the DeepSEA features for a faster computational demonstration.

Usage

data(example.data)

Format

The example.data$train.data and example.data$test.data are dataframes with 220 and 100 observations and 146 variables.

response A binary response vector

features Standardized 145 DeepSEA features
Description

Fit a logistic regression with presence-only response via penalized maximum likelihood. The regularization path is computed for the elastic-net penalty at a pair values of lambda and the prevalence parameter.

Usage

```r
PO.EN(x, y, o.iter = 5, i.iter = 5, lambda = .01, alpha = .5, true.prob = 0.5, beta_start, epsilon = 1e-4, gram.input = FALSE, XtX.input = 0, ytx.input = 0, XtX_reduce.input)
```

Arguments

- `x`: Input design matrix. Should not include the intercept vector.
- `y`: Response variable. Should be a binary vector, such that 0 represents background observations and 1 represents presence observations.
- `o.iter`: Number of outer loop iteration.
- `i.iter`: Number of inner loop iteration.
- `lambda`: A user supplied Elastic Net penalty parameter.
- `alpha`: The elastic net mixing parameter, where $0 \leq \alpha \leq 1$.
- `true.prob`: The prevalence parameter, should be provided by users. Can be tuned in the cross-validation function.
- `beta_start`: A user supplied starting coefficients vector.
- `epsilon`: The threshold for stopping the coordinate descent algorithm.
- `gram.input`: The function allows users to feed the gram matrix for faster computation. The default setting is False, and the function compute the gram matrix for computation.
- `XtX.input`: If gram.input is TRUE, users should supply the corresponding gram matrix X'X.
- `ytx.input`: If gram.input is TRUE, users should supply the product of y'X.
- `XtX_reduce.input`: If gram.input is TRUE, users should supply a matrix of X'X without the diagonal entries.

Details

The function fits a presence-only model with an elastic net penalty.

Value

- `beta`: The fitting vector of the coefficients, the intercept is included.
Examples

data(example.data) # example datasets, including training dataset and testing dataset
train_data<-example.data$train.data
y_train=train_data$response;x_train=train_data[, -1] # response and design matrix of training data
test_data<-example.data$test.data
y_test=test_data$response;x_test=test_data[, -1] # response and design matrix of testing data
PO.EN.beta<-PO.EN(x_train, y_train, lambda=0.1,
true.prob=sum(y_train)/length(y_train), beta_start=rep(0, ncol(x_train)+1))
predictions<-PO.EN.predict(x_test, PO.EN.beta)
pROC::roc(y_test~predictions)

PO.EN.predict

PO-EN predicting function

Description

A prediction function using the linear predictor of PO-EN fitting results.

Usage

PO.EN.predict(X, beta)

Arguments

X Input design matrix. Should not include the intercept vector.
beta A coefficients vector from the PO-EN fitting function.

sum_compute_single_rcpp

Softthresholding computation function

Description

Softthresholding computation function
Index

* datasets
 example.data, 4
* presence-only elastic-net
 PO.EN-package, 2

 cv.PO.EN, 3
 example.data, 4

 PO.EN, 5
 PO.EN-package, 2
 PO.EN.predict, 6

 sum_compute_single_rcpp, 6