Package ‘POPdemog’

Type Package

Version 1.0.3

Title Plot Population Demographic History

Date 2017-12-07

Author Ying Zhou

Maintainer Ying Zhou <yz001@uw.edu>

Description Plot demographic graphs for single/multiple populations from coalescent simulation program input. Currently, this package can support the 'ms', 'msHot', 'MaCS', 'msprime', 'SCRM', and 'Cosi2' simulation programs. It does not check the simulation program input for correctness, but assumes the simulation program input has been validated by the simulation program. More features will be added to this package in the future, please check the 'GitHub' page for the latest updates: <https://github.com/YingZhou001/POPdemog>.

License GPL-2

RoxygenNote 6.0.1

Suggests knitr, maps, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Repository CRAN

Date/Publication 2017-12-13 09:15:21 UTC

R topics documented:

POPdemog-package .. 2
NOut ... 3
NRuler ... 4
PlotMig .. 5
PlotMMig .. 7
PlotMS .. 7

Index 11
Description

Plot demographic graphs for single/multiple populations from coalescent simulation program input. This package does not check the simulation program input for correctness, but assumes the simulation program input has been validated by the simulation program. More features will be added to this package in the future, please check the `GitHub` page for the latest updates: https://github.com/YingZhou001/POPdemog.

Details

This package contains functions to visualize the population demographic history from coalescent simulation program input. This package supports the ms, msHot, MaCS, msprime, cosi, and SCRM simulation programs. Please check the [online tutorial file](#) for the current list of supported programs.

The input of the program is a file or string containing the simulation program commands(for ms, msa, msHot, and MaCS), or the parameter file (for Cosi), or a conversion of the program commands into ms format(for msprime). The input file or string should only contain one demographic model.

Once the input file or string is prepared, the `plotms` function can be used to generate a plot of the demographic model or to generate parameters to pass to the `plotMig` function for displaying migrations. The visualization of migrations can be customized using the `plotMig` function.

Author(s)

Ying Zhou <yz001@uw.edu>

References

Examples

Tennessen’s standard model

``` r
"macs 2025 15000000 -i 10 -r 3.0e-04 -t 0.000069 -T -I 4 10 1006 1008 1 0
-n 4 0.205 -n 1 58.00274 -n 2 70.041 -n 3 187.55 -eg 0.9e-10 1 482.46
-eg 1.0e-10 2 570.18 -eg 1.1e-10 3 720.23 -em 1.2e-10 1 2 0.731
-em 1.3e-10 2 1 0.731 -em 1.4e-10 3 1 0.2281 -em 1.5e-10 1 3 0.2281
-em 1.6e-10 2 3 0.9094 -em 1.7e-10 3 2 0.9094 -eg 0.007 1 0
-en 0.007001 1 1.98 -eg 0.007002 2 89.7668 -eg 0.007003 3 113.3886
-XG 0.031456 0 -en 0.031457 2 0.1412 -en 0.031458 3 0.9759
-em 0.031459 0 -ej 0.03146 3 2 -en 0.0314601 2 0.2546
-em 0.0314602 2 1 4.386 -en 0.0314603 1 2 4.386 -eM 0.0697669 0
-ej 0.069767 2 1 -en 0.0697671 1 1.98 -en 0.2025 1 1 -ej 0.9575923 4 1
-en 0.06765 2 4 32 -en 0.06840 2 4 0" -> std_model_Tennessen.cmd

#plot the demographic graph
par(mfrow = c(1,2))
PlotMS(input.cmd = std_model_Tennessen.cmd, type = "macs", N4 = 10000, size.scale = "log", log.base = 50, inpos = c(1,4,7,9), time.scale = "log10year",
col.pop = c("brown", "blue", "gold3", "forestgreen"),
pops = c("AFR", "EUR", "ASIA", "ARC"),
cex.lab = 1, cex.axis = 1, xlab = "", length.arrowtip = 0.1)
title("Demographic history")
PlotMS(input.cmd = std_model_Tennessen.cmd, type = "macs", N4 = 10000, time.scale = "log10year", plot.out = FALSE, demo.out = TRUE) -> out;
PlotMig(time.pt = 2, demograph_out = out$demograph_out, mig_par = out$mig_par,
col.pop = c("brown", "blue", "gold3", "forestgreen"), size.scale = "topology"),
legend("topleft", legend = c("AFR", "EUR", "ASIA", "ARC"),
col = c("brown", "blue", "gold3", "forestgreen"), pch = 20, bty = "n")
title("Migrations at 200 years ago")

### Archaic introgression model

"./ms 44 1 -r 20000 50000000 -t 30000 -I 6 20 20 1 1 1 1 -en 0 1 1
-en 0 2 1 -en 0 3 1e-10 -en 0 4 1e-10 -en 0 5 1e-10 -en 0 6 1e-10
-es 0.0125 2 0.97 -en 0.02500025 7 0.25 -en 0.02500025 2 1 -ej 0.05 4 3
-ej 0.05 6 5 -en 0.0500025 3 0.25 -en 0.0500025 5 0.25 -ej 0.0500025 5 3
-en 0.0500025 3 0.25 -ej 0.0750025 2 1 -en 0.0750025 1 1 -ej 0.1 7 3
-en 0.1000025 3 0.25 -ej 0.3 3 1 -en 0.3000025 1 1" -> test.1.ms.cmd

PlotMS(input.cmd = test.1.ms.cmd, type = "ms", N4 = 10000, time.scale = "kyear", length.arrowtip = 0.1, inpos = c(1,2,5,4,5,5,5,6,3),
col.pop = c("brown", "blue", "forestgreen", rainbow(10)[6:9]));

### Migration model from ms.

"./ms 15 100 -t 3.0 -I 6 0 7 0 8 0 -m 1 2 2.5 -m 2 1 2.5 -m 2 3 2.5
-m 3 2 2.5 -m 4 5 2.5 -m 5 4 2.5 -m 6 5 2.5 -m 6 5 5.25 -m 6 5 4 2.5
-em 2.0 4 3 2.5" -> test.2.ms.cmd

PlotMS(input.cmd = test.2.ms.cmd, type = "ms", N4 = 10000, col.pop = "gray",
col.arrow = "black", length.arrowtip = 0.1, lwd.arrow = 2);

Output population sizes at a particular time
NRuler

Description
Output population sizes at a particular time.

Usage
NOut(time_pt, time.scale, demograph_out)

Arguments
- time_pt: A numeric value defining the time point for the migrations which will be plotted. time_pt should be in the scale defined by time.scale. For example, time_pt = 3 when time.scale = "log10year" corresponds to the migrations $10^3$ years ago.
- time.scale: A keyword to define the time scale used in the plot. It can be "4Ne", "generation", "year", "kyear", and "log10year". When the size.scale = "topology", this parameter will be ignored.
- demograph_out: A list containing all demographic information, see PlotMS.

Value
A vector of all population sizes for the specified time.

NRuler

Description
Adds a ruler for the population size. This function works like the function legend.

Usage
NRuler(x, y = NULL, Nsize, NLab = Nsize, N4, size.scale, linear.scale = 0.2, log.base = 10, ...)

Arguments
- x, y: Position of the population size ruler. If y does not have numeric value, x will support keyword input from the list "bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right" and "center".
- Nsize: The population sizes of the ticks on the ruler.
- NLab: The labels on the ticks of the ruler. Default labels are the population index.
- N4: Scalar to scale population size.
- size.scale: A keyword to define the way population size is scaled and displayed. It supports "log" and "linear".
- linear.scale: The scale factor applied to the population size when size.scale = "linear".
- log.base: The base of logarithm used when size.scale = "log".
- ...: Additional arguments can be passed, such as col, lwd, lty.
PlotMig

Plot migration event(s) at a particular time

Description

This function plots migration events at a particular time point based on the output of PlotMS with demo.out = T and plot.out = F. The time.pt or event determines the time points that are plotted. The add and map.pos parameters allow the migration graph to be added to other backgrounds such as maps.

Usage

PlotMig(time_pt = NULL, event = 1, mig_par, demograph_out,
        size.scale = mig_par$size.scale, time.scale = mig_par$time.scale,
        linear.scale = mig_par$linear.scale, log.base = mig_par$log.base,
        col.pop = mig_par$col.pop, col.arrow = mig_par$col.arrow,
        xlim = mig_par$xlim, ylim = mig_par$ylim, lwd.arrow = mig_par$lwd.arrow,
        length.arrowtip = mig_par$length.arrowtip,
        angle.arrowtip = mig_par$angle.arrowtip, toposize.scale = 1,
        add = FALSE, map.pos = NULL, m.adjust = 0)

Arguments

time_pt A numeric value defining the time point for the migrations which will be plotted. time_pt should be in the scale defined by time.scale. For example, time_pt = 3 when time.scale = "log10year" corresponds to the migrations 10^3 years ago.

event An index to define at which time to plot migration(s). Every demographic event has an index in the order of time. Demographic changes at the same time are all defined as the same event and share the same index.

mig_par A list contained all settings for plotting the demographic graph, see PlotMS.

demograph_out A list containing all demographic information, see PlotMS.

size.scale A keyword to define the scaling of lineage width. "topology" returns only topology structure among simulated populations, ignoring both the population sizes and the length of time between any demographic events. "linear" linearly scales the lineage widths as a function of the population size, with the scale factor defined by the variable linear.scale; "log" scales the lineage width logarithmically as a function of the population size. The logarithm base is defined by the variable log.base.

time.scale A keyword to define the time scale used in the plot. It can be "4Ne", "generation", "year", "kyear", and "log10year". When the size.scale = "topology", this parameter will be ignored.

linear.scale Linear scale magnitude, to be applied when size.scale = "linear".

log.base The base of logarithm, to be applied when size.scale = "log".

col.pop Population lineage color.
col.arrow Migration arrow color.
xlim The range of x-axis.
ylim The range of y-axis.
lwd.arrow Control the line width of arrow representing a migration. The arrow width is defined by 0.5+migration strength*lwd.arrow.
length.arrowtip Length of the edges of the arrow tip.
angle.arrowtip The angle of the arrow tip, between 0 and 90.
toposize.scale Control the scaling of the size of circle when the size.scale = "topology".
add A logical value allowing one to add the migrations to another background (2-D only). Positions for every population dime should be defined in map.pos.
map.pos A matrix with two columns, the ith row is the coordinate for the ith population.
m.adjust Migration threshold for plotting migration events. Migration events with strength higher than m.adjust will be shown. The migration strength is defined as the proportion of the target population being replaced by the source population per generation. Default value is 0.

See Also
PlotMS

Examples

```r
test.mig.cmd <- "./ms 15 100 -t 3.0 -I 6 0 7 0 8 0 -m 1 2 2.5 -m 2 1 2.5
-m 2 3 2.5 -m 3 2 2.5 -m 4 5 2.5 -m 5 4 2.5 -m 5 6 2.5 -m 6 5 2.5
-Em 2.0 3 4 2.5 -Em 2.0 4 3 2.5"
out <- PlotMS(input.cmd = test.mig.cmd, type = "ms",
N4 = 10000, plot.out = FALSE, demo.out = TRUE);
#check all migration events
events <- outmig_parevents
print(events)
#check the time for those migration events
timeofevents <- outmig_partime[events]
print(timeofevents)
#plot event by event
par(mfrow = c(1, 2))
PlotMig(event = 1, demograph_out = out$demograph_out, mig_par = out$mig_par)
title("Event-1");
PlotMig(event = 2, demograph_out = out$demograph_out, mig_par = out$mig_par,
col.pop = 1:6, xlim = c(-5,4))
title("Event-2", cex.main = 3);
legend("topleft", col = 1:6, pch = 20, bty = "n", cex = 2,
legend = c("pop-1", "pop-2", "pop-3", "pop-4", "pop-5", "pop-6"))
```
**PlotMMig**

**Plot Multiple Migrations**

**Description**

This function is used to plot all the migration events based on the output of `PlotMS` with `plot.out = FALSE` and `demo.out = TRUE`. Plot settings should be customized in `PlotMS`. Use function `PlotMig` to customize the plot of single migration.

**Usage**

```r
PlotMMig(demograph_out, mig_par, m.adjust = 0)
```

**Arguments**

- `demograph_out`: A list of all demographic information. See the return value description of `PlotMS`.
- `mig_par`: A list of all settings for plotting the demographic graph. See the return value description of `PlotMS`.
- `m.adjust`: Migration threshold for plotting migration events. Migration events with strength higher than `m.adjust` will be shown. The migration strength is defined as the proportion of the target population being replaced by the source population per generation. Default value is 0.

**See Also**

`PlotMS`

**Examples**

```r
mig.cmd <- "./ms -i 15 100 -t 3.0 -I 6 0 7 0 0 0 -m 1 2 2.5 -m 2 1 2.5 -m 2 3 2.5 -m 3 2 2.5 -m 4 5 2.5 -m 5 4 2.5 -m 5 6 2.5 -m 6 5 2.5 -em 2.0 3 4 2.5 -em 2.0 4 3 2.5"
out <- PlotMS(input.cmd = mig.cmd, type = "ms", N4 = 10000, plot.out = FALSE, demo.out = TRUE, col.pop = 1:6, cex.lab = 1.5);
PlotMMig(demograph_out = out$demograph_out, mig_par = out$mig_par)
```
Description

This is the main function to plot demographic graph for single/multiple populations. The function is named after Hudson’s ms program. It can read the simulation input data used for the ms, msa, mshoT, MaCS, scrm, and cosi programs.

The input.cmd or input.file and command type are required to plot the demographic history. The output graph can be customized.

In the demographic graph, each population has a lineage that stretches back in time. The width of the lineage reflects the population size. Population splits and migrations are represented by arrows.

Usage

PlotMS(input.cmd = NULL, input.file = NULL, type = inputNfile, inpos = NULL, 
N4 = 10000, size.scale = "linear", linear.scale = 0.2, log.base = 10, 
time.scale = "4Ne", gen = 25, m.adjust = 0, col.pop = "gray45", 
col.arrow = col.pop, length.arrowtip = 0.15, lwd.arrow = 1, 
angle.arrowtip = 15, pops = NULL, xlab = "Population", 
ylab = paste("Time before present (", time.scale, ")", sep = ""), 
xlim = NULL, ylim = NULL, plot.out = T, demo.out = F, cex.lab = 1, 
cex.axis = 1, axes = T)

Arguments

input.cmd A string containing the simulation program input commands.
input.file A file containing the simulation program input commands (for ms, msa, or MaCS), or parameter files (for cosi).
type A keyword indicating the type of simulation command: "ms" for ms, "msa" for msa, "macs" for MaCS, "scrm" for scrm, "cosi" for cosi, "msprime" for msprime. Please check the online tutorial file to see more supported simulation programs.
inpos Population positions in the plot at time 0.
N4 Four times the effective population size. This parameter has the same definition as the 4N0 parameter for the ms simulation program.
size.scale A keyword to define the scaling of lineage width. "topology" returns only topology structure among simulated populations, ignoring both the population sizes and the length of time between any demographic events. "linear" linearly scales the lineage widths as a function of the population size, with the scale factor defined by the variable linear.scale; "log" scales the lineage width logarithmically as a function of the population size. The logarithm base is defined by the variable log.base.
linear.scale Linear scale factor, which will be applied when size.scale = "linear".
log.base The base of logarithm, which will be applied when size.scale = "log".
time.scale A keyword to define the time scale used in the plot. It can be "4Ne", "generation", "year", "kyear", and "log10year". When the size.scale = "topology", this parameter will be ignored.
gen Years per generation. Default value is 25.
m.adjust  Migration threshold for plotting migration events. Migration events with strength higher than \( m\text{.adjust} \) will be shown. The migration strength is defined as the proportion of the target population being replaced by the source population per generation. Default value is 0. This value should be between 0 and 1.

col.pop  Color for each population.
col.arrow  Color for each migration arrow.
length.arrowtip  Size of arrow tips.
lwd.arrow  Controls the width of arrow representing a migration. The arrow width is determined by \( 0.5 + \text{migration strength} \times \text{lwd\_arrow} \).

angle.arrowtip  Arrow end angle, between 0 and 90.
pops  Population name labels. Default as 1:number of populations.
xlab  Title for the x-axis.
ylab  Title for the y-axis.
xlim  Range of x-axis.
ylim  Range of y-axis.

plot.out  A logical variable that controls the production of the demographic plot. If TRUE, the demographic plot will be produced.
demo.out  A logical variable that controls the output of the demographic parameters. If TRUE, all demographic parameters that are used for the graph will be returned.
cex.lab  The magnification to be used for x and y labels relative to the current setting of cex.
cex.axis  The magnification to be used for axis annotation relative to the current setting of cex.
axes  A logical value to plot the axes or not.

Value

if the parameter \( \text{plot} = \text{F/FALSE} \), the following three lists will be returned:

demograph.out  This list contains all demographic details from the input command file:
  \begin{itemize}
    \item \text{time\_series} is a vector of time;
    \item \text{Pos} is a numeric matrix of positions for each population at every demographic event;
    \item \text{N} is a numeric matrix of population size for each population at every demographic event;
    \item \text{m} is a 3-D numeric matrix of migration rates between populations at every demographic event;
    \item \text{survive} is a matrix recording the begining and end for each population according to the demographic events;
    \item \text{g\_rate} is a matrix of exponential growth rates at every demographic event;
    \item \text{pop\_pos} is a numeric vector of the population positions at time 0;
    \item \text{pop\_lab} is a vector of population names;
  \end{itemize}
- `mscmd` is the `ms` command for the demographic plot. Demographic information from simulation scripts will be turned to `ms` command format for further extraction;
- `present.pop.num` is the number of populations at present;
- `total.pop.num` is the number of total populations exist in the plot;
- \( N4 \) is \( 4N_e \);
- `gen` is the number of years per generation.

**evo_par**
This list contains all parameters used to draw the demographic graph, including: `size.scale`, `linear.scale`, `log.base`, `time.scale`, `time`, `col.pop`, `col.arrow`, `length.arrowtip`, `lwd.arrow`, `angle.arrowtip`, `lab.pop`, `lab.pos`, `xlim`, `ylim`, `xlab`, `ylab`, `cex.lab`, `cex.axis`, `axes`. See more details in the parameter description.

**mig_par**
This list contains all parameters used to draw the migrations, including: `size.scale`, `linear.scale`, `log.base`, `time.scale`, `time`, `lab.pop`, `col.pop`, `col.arrow`, `length.arrowtip`, `lwd.arrow`, `angle.arrowtip`, `xylim`, `events`, `cex.lab`
See more details in the parameter description.

**References**

4Ne: [http://home.uchicago.edu/rhudson1/source/mksamples.html](http://home.uchicago.edu/rhudson1/source/mksamples.html)
Index

*Topic Population
  POPdemog-package. 2
*Topic demographic history
  POPdemog-package. 2

NOut, 3
NRuler, 4

PlotMig, 2, 5, 7
PlotMMig, 2, 7
PlotMS, 2, 4–7, 7
POPdemog (POPdemog-package), 2
POPdemog-package, 2