Package ‘PWD’

February 29, 2016

Type Package

Title Time Series Regression Using the Power Weighted Densities (PWD) Approach

Version 1.0

Date 2016-02-27

Maintainer Daniel McCarthy <danielmc@wharton.upenn.edu>

URL http://www-stat.wharton.upenn.edu/~danielmc/

Description Contains functions which allow the user to perform time series regression quickly using the Power Weighted Densities (PWD) approach. alpha-hat_LR_one_Rcpp() is the main workhorse function within this package.

License GPL-3

Imports Rcpp (>= 0.11.5), stats, graphics

LinkingTo Rcpp, RcppArmadillo

NeedsCompilation yes

Author Daniel McCarthy [aut, cre, ctb]

Repository CRAN

Date/Publication 2016-02-29 18:39:30

R topics documented:

PWD-package .. 2
alphahat_LR_one_Rcpp .. 2
bhat.func .. 3
loglik.norm.LR.Rcpp 4
logliknormLR .. 5

Index 7
Description

Contains functions which allow the user to perform time series regression quickly using the Power Weighted Densities (PWD) approach. alphahat_LR_one_Rcpp() is the main workhorse function within this package.

Details

Package: PWD
Type: Package
Version: 1.0
Date: 2016-02-27
License: GPL-3

Author(s)

Daniel McCarthy
Maintainer: Daniel McCarthy <danielm@wharton.upenn.edu>

References

 alphahat_LR_one_Rcpp

Estimates PWD Parameter alpha by Maximum Marginal Predictive Likelihood

Description

This is the main function of the package. It takes as inputs the time series data as response, as well as a predictor matrix, excluding the intercept column, and other settings. It returns as outputs a scalar representing the value of alpha which maximizes the marginal predictive likelihood of the data given the grid of alpha values considered.
Usage

alphahat_LR_one_Rcpp(y, X = FALSE, alpha.grid = seq(0.65, 1, length.out = 150), init = 2, plotting = TRUE)

Arguments

y
T-length time series vector. y[1] represents the beginning of the time series.
X
[T x p] dimensional matrix of covariates. This should not include the intercept column. If X is FALSE, intercept model is run.
alpha.grid
Grid of alpha values over which to compute the marginal predictive likelihood.
init
integer representing the time point to begin computing marginal predictive likelihoods.
plotting
If TRUE, plot the marginal predictive distribution of alpha.

Value

Return a scalar value representing the value of alpha which maximizes the marginal predictive likelihood of the data over the grid of alpha values considered.

Examples

set.seed(12)
N=80
der = rnorm(N)
X = 1:N
slopes = c(rep(1.5,40),rep(2,N-40))
y = rep(5,N) + slopes*X + err
init=6
alpha.grid = seq(.75,1,length.out=40)
alphahat=alphahat_LR_one_Rcpp(y=y,X=X, alpha.grid=alpha.grid, init=init, plotting=TRUE)
alphahat = 1.0
coeffs1 = bhat.func(y,X,alphahat)
coeffs2 = bhat.func(y,X,alphahat)
plot(x=X,y=y)
abline(a=coeffs2[1],b=coeffs2[2],lty=2,col="red")
abline(a=coeffs1[1],b=coeffs1[2],lty=2)
legend("right", legend=c("OLS","PWD"), col=c(1,2), lty=c(2,2), lwd=c(1,1))

bhat.func
Compute PWD Regression Coefficients Given alpha

Description

This function computes PWD regression coefficients for response y and predictors X given a particular value of alpha.
Usage
bhat.Nfunc(y, X, alpha)

Arguments
y
T-length time series vector. y[1] represents the beginning of the time
series.
X
[T x p] dimensional matrix of covariates. This should not include the
intercept column. If X is FALSE, intercept model is run.
alpha
PWD parameter we are calculating the marginal predictive loglikelihood for.

Value
(p+1)-length vector representing the regression coefficients associated with a PWD regression of y
upon X given PWD parameter alpha.

Examples
set.seed(12)
N=80
err = rnorm(N)
X = 1:N
slopes = c(rep(1.5,40),rep(2,N-40))
y = rep(5,N) + slopes*X + err
alpha1 = 1.0
coeffs1 = bhat.Nfunc(y,X,alpha1)
alpha2 = .9
coeffs2 = bhat.Nfunc(y,X,alpha2)
plot(x=X,y=y)
abline(a=coeffs2[1],b=coeffs2[2],lty=2,col="red")
abline(a=coeffs1[1],b=coeffs1[2],lty=2)
legend("right", legend=c("OLS","PWD"), col=c(1,2), lty=c(2,2), lwd=c(1,1))

loglik.norm.LR.Rcpp
Comptele Predictive Loglikelihood of Data Given alpha

Description
This function computes the marginal predictive loglikelihood of the observed data given a particular
value of alpha, and the time point to begin computing marginal predictive loglikelihoods.

Usage
loglik.norm.LR.Rcpp(y, X = FALSE, alpha, init)
Arguments

- **y**: T-length time series vector. y[1] represents the beginning of the time series.
- **x**: [T x p] dimensional matrix of covariates. This should not include the intercept column. If X is FALSE, intercept model is run.
- **alpha**: PWD parameter we are calculating the marginal predictive loglikelihood for.
- **init**: integer representing the time point to begin computing marginal predictive loglikelihood.

Value

Return a scalar value representing the marginal predictive loglikelihood of the data given alpha.

Examples

```r
N = 80
dd = rnorm(N)
x = 1:N
slopes = c(rep(1.5,40),rep(2,N-40))
y = rep(5,N) + slopes*X + err
init=4
alpha.grid = seq(.65,1,length.out=40)
i=40
loglik.normLR.Rcpp(y,X, alpha=alpha.grid[i],init=init)
```

Description

Helper function which takes as input a vector-valued response, y, a predictor matrix, X, a particular value of alpha, and init. It returns as an output the marginal predictive loglikelihood of the data given that value of alpha.

Usage

```r
logliknormLR(yy, XX_aug, alpha, init)
```

Arguments

- **yy**: T-length time series vector. y[1] represents the beginning of the time series.
- **XX_aug**: [T x (p+1)] dimensional matrix of covariates. This will include the intercept column.
- **alpha**: PWD parameter we are calculating the marginal predictive loglikelihood for.
- **init**: integer representing the time point to begin computing marginal predictive loglikelihood.
Value

Return a scalar value representing the marginal predictive loglikelihood of the data given alpha.
Index

*Topic package
 PWD-package, 2

alphahatLR_one_Rcpp, 2
bhat.func, 3
loglik.normLR.Rcpp, 4
logliknormLR, 5
PWD (PWD-package), 2
PWD-package, 2