Package ‘PowerUpR’

June 1, 2019

Type Package
Title Power Analysis Tools for Multilevel Randomized Experiments
Version 1.0.4
Date 2019-06-01
Description Includes tools to calculate statistical power, minimum detectable effect size (MDES), MDES difference (MDESD), and minimum required sample size for various multilevel randomized experiments with continuous outcomes. Some of the functions can assist with planning two- and three-level cluster-randomized trials (CRTs) sensitive to multilevel moderation and mediation (2-1-1, 2-2-1, and 3-2-1). See ‘PowerUp!’ Excel series at <https://www.causalevaluation.org/>.

Suggests knitr, rmarkdown
VignetteBuilder knitr
License GPL (>= 3)
NeedsCompilation no
Author Metin Bulus [aut, cre],
 Nianbo Dong [aut],
 Benjamin Kelcey [aut],
 Jessaca Spybrook [aut]
Maintainer Metin Bulus <bulusmetin@gmail.com>
Repository CRAN
Date/Publication 2019-06-01 10:40:03 UTC

R topics documented:

PowerUpR-package .. 2
bcra3f2 ... 2
bcra3r2 ... 4
bcra4f3 ... 5
bcra4r2 ... 7
bcra4r3 ... 9
bira2e1 ... 10
bira2f1 ... 12
Description

PowerUp! series consist of three excel-based applications to design various multilevel randomized experiments to detect main treatment effects, and to design two- and three-level cluster-randomized trials (CRTs) to detect multilevel moderation and mediation. For more information please refer to http://www.causalevaluation.org/.

bcra3f2

Three-Level Blocked (Fixed) Cluster-level Random Assignment Design, Treatment at Level 2

Description

Use `mdes.bcra3f2()` to calculate the minimum detectable effect size, `power.bcra3f2()` to calculate the statistical power, and `mrss.bcra3f2()` to calculate the minimum required sample size.

Usage

```r
mdes.bcra3f2(power=.80, alpha=.05, two.tailed=TRUE,
              rho2, p=.50, g2=0, r21=0, r22=0,
              n, J, K)

power.bcra3f2(es=.25, alpha=.05, two.tailed=TRUE,
               rho2, p=.50, g2=0, r21=0, r22=0,
               n, J, K)

mrss.bcra3f2(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
             n, J, K0=10, tol=.10,
             rho2, p=.50, g2=0, r21=0, r22=0)
```
Arguments

- **power**: statistical power \((1 - \beta)\).
- **es**: effect size.
- **alpha**: probability of type I error.
- **two.tailed**: logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
- **rho2**: proportion of variance in the outcome between level 2 units (unconditional ICC2).
- **p**: average proportion of level 2 units randomly assigned to treatment within level 3 units.
- **g2**: number of covariates at level 2.
- **r21**: proportion of level 1 variance in the outcome explained by level 1 covariates.
- **r22**: proportion of level 2 variance in the outcome explained by level 2 covariates.
- **n**: harmonic mean of level 1 units across level 2 units (or simple average).
- **J**: harmonic mean of level 2 units across level 3 units (or simple average).
- **K**: number of level 3 units.
- **K0**: starting value for \(K\).
- **tol**: tolerance to end iterative process for finding \(K\).

Value

- **fun**: function name.
- **parms**: list of parameters used in power calculation.
- **df**: degrees of freedom.
- **ncp**: noncentrality parameter.
- **power**: statistical power \((1 - \beta)\).
- **mdes**: minimum detectable effect size.
- **K**: number of level 3 units.

Examples

```
# cross-checks
mdes.bcra3f2(rho2=.10, n=20, J=44, K=5)
power.bcra3f2(es = .145, rho2=.10, n=20, J=44, K=5)
mrss.bcra3f2(es = .145, rho2=.10, n=20, J=44)
```
Description

Use `mdes.bcra3r2()` to calculate the minimum detectable effect size, `power.bcra3r2()` to calculate the statistical power, and `mrss.bcra3r2()` to calculate the minimum required sample size.

Usage

```r
mdes.bcra3r2(power=.80, alpha=.05, two.tailed=TRUE,
               rho2, rho3, omega3, p=.50, g3=0, r21=0, r22=0, r2t3=0,
               n, J, K)
```

```r
power.bcra3r2(es=.25, alpha=.05, two.tailed=TRUE,
                rho2, rho3, omega3, p=.50, g3=0, r21=0, r22=0, r2t3=0,
                n, J, K)
```

```r
mrss.bcra3r2(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
              n, J, K0=10, tol=.10,
              rho2, rho3, omega3, p=.50, g3=0, r21=0, r22=0, r2t3=0)
```

Arguments

- `power` statistical power \((1 - \beta)\).
- `es` effect size.
- `alpha` probability of type I error.
- `two.tailed` logical; `TRUE` for two-tailed hypothesis testing, `FALSE` for one-tailed hypothesis testing.
- `rho2` proportion of variance in the outcome between level 2 units (unconditional ICC2).
- `rho3` proportion of variance in the outcome between level 3 units (unconditional ICC3).
- `omega3` treatment effect heterogeneity as ratio of treatment effect variance among level 3 units to the residual variance at level 3.
- `p` average proportion of level 2 units randomly assigned to treatment within level 3 units.
- `g3` number of covariates at level 3.
- `r21` proportion of level 1 variance in the outcome explained by level 1 covariates.
- `r22` proportion of level 2 variance in the outcome explained by level 2 covariates.
- `r2t3` proportion of treatment effect variance among level 3 units explained by level 3 covariates.
- `n` harmonic mean of level 1 units across level 2 units (or simple average).
- `J` harmonic mean of level 2 units across level 3 units (or simple average).
bcra4f3

K
number of level 3 units.

K0
starting value for K.

tol
tolerance to end iterative process for finding K.

Value

- **fun**: function name.
- **parms**: list of parameters used in power calculation.
- **df**: degrees of freedom.
- **ncp**: noncentrality parameter.
- **power**: statistical power \((1 - \beta)\).
- **mdes**: minimum detectable effect size.
- **K**: number of level 3 units.

See Also

cosa.bcrd3r2

Examples

```r
# cross-checks
mdes.bcra3r2(rho3=.13, rho2=.10, omega3=.4, n=10, J=6, K=24)
power.bcra3r2(es = .246, rho3=.13, rho2=.10, omega3=.4, n=10, J=6, K=24)
mrss.bcra3r2(es = .246, rho3=.13, rho2=.10, omega3=.4, n=10, J=6)
```

bcra4f3
Four-Level Blocked (Fixed) Cluster-level Random Assignment Design, Treatment at Level 3

Description

Use `mdes.bcra4f3()` to calculate the minimum detectable effect size, `power.bcra4f3()` to calculate the statistical power, and `mrss.bcra4f3()` to calculate the minimum required sample size.

Usage

```r
mdes.bcra4f3(power=.80, alpha=.05, two.tailed=TRUE, rho2, rho3, p=.50, r21=0, r22=0, r23=0, g3=0, n, J, K, L)
power.bcra4f3(es=.25, alpha=.05, two.tailed=TRUE, rho2, rho3, p=.50, r21=0, r22=0, r23=0, g3=0, n, J, K, L)
```
mrss.bcra4f3(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
 n, J, K, L0=10, tol=.10,
 rho2, rho3, p=.50, g3=0, r21=0, r22=0, r23=0)

Arguments

 power statistical power \((1 - \beta)\).
 es effect size.
 alpha probability of type I error.
 two.tailed logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
 rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).
 rho3 proportion of variance in the outcome between level 3 units (unconditional ICC3).
 p average proportion of level 3 units randomly assigned to treatment within level 4 units.
 g3 number of covariates at level 3.
 r21 proportion of level 1 variance in the outcome explained by level 1 covariates.
 r22 proportion of level 2 variance in the outcome explained by level 2 covariates.
 r23 proportion of level 3 variance in the outcome explained by level 3 covariates.
 n harmonic mean of level 1 units across level 2 units (or simple average).
 J harmonic mean of level 2 units across level 3 units (or simple average).
 K harmonic mean of level 3 units across level 4 units (or simple average).
 L number of level 4 units.
 L0 starting value for L.
 tol tolerance to end iterative process for finding L.

Value

 fun function name.
 parms list of parameters used in power calculation.
 df degrees of freedom.
 ncp noncentrality parameter.
 power statistical power \((1 - \beta)\).
 mdes minimum detectable effect size.
 L number of level 4 units.

Examples

 # cross-checks
 mdes.bcra4f3(rho3=.15, rho2=.15,
 n=10, J=4, K=4, L=15)
 power.bcra4f3(es=0.339, rho3=.15, rho2=.15,
 n=10, J=4, K=4, L=15)
 mrss.bcra4f3(es=0.339, rho3=.15, rho2=.15,
 n=10, J=4, K=4)
Four-Level Blocked Cluster-level Random Assignment Design, Treatment at Level 2

Description

Use `mdes.bcra4r2()` to calculate the minimum detectable effect size, `power.bcra4r2()` to calculate the statistical power, and `mrss.bcra4r2()` to calculate the minimum required sample size.

Usage

```r
mdes.bcra4r2(power=.80, alpha=.05, two.tailed=TRUE,
               rho2, rho3, rho4, omega3, omega4,
               p=.50, r21=0, r22=0, r2t3=0, r2t4=0, g4=0,
               n, J, K, L)
```

```r
power.bcra4r2(es=.25, alpha=.05, two.tailed=TRUE,
               rho2, rho3, rho4, omega3, omega4,
               p=.50, r21=0, r22=0, r2t3=0, r2t4=0, g4=0,
               n, J, K, L)
```

```r
mrss.bcra4r2(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
              n, J, K, L, L0=10, tol=.10,
              rho2, rho3, rho4, omega3, omega4,
              p=.50, r21=0, r22=0, r2t3=0, r2t4=0, g4=0)
```

Arguments

- `power`: statistical power $(1 - \beta)$.
- `es`: effect size.
- `alpha`: probability of type I error.
- `two.tailed`: logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
- `rho2`: proportion of variance in the outcome between level 2 units (unconditional ICC2).
- `rho3`: proportion of variance in the outcome between level 3 units (unconditional ICC3).
- `rho4`: proportion of variance in the outcome between level 4 units (unconditional ICC4).
- `omega3`: treatment effect heterogeneity as ratio of treatment effect variance among level 3 units to the residual variance at level 3.
- `omega4`: treatment effect heterogeneity as ratio of treatment effect variance among level 4 units to the residual variance at level 4.
- `p`: average proportion of level 2 units randomly assigned to treatment within level 3 units.
- `g4`: number of covariates at level 4.
- `r21`: proportion of level 1 variance in the outcome explained by level 1 covariates.
proportion of level 2 variance in the outcome explained by level 2 covariates.

\(r_{22} \)

proportion of treatment effect variance among level 3 units explained by level 3 covariates.

\(r_{2t3} \)

proportion of treatment effect variance among level 4 units explained by level 4 covariates.

\(r_{2t4} \)

harmonic mean of level 1 units across level 2 units (or simple average).

\(n \)

harmonic mean of level 2 units across level 3 units (or simple average).

\(J \)

harmonic mean of level 3 units across level 4 units (or simple average).

\(K \)

number of level 4 units.

\(L \)

starting value for \(L \).

\(L_0 \)

tolerance to end iterative process for finding \(L \).

\(tol \)

Value

- **fun**: function name.
- **parms**: list of parameters used in power calculation.
- **df**: degrees of freedom.
- **ncp**: noncentrality parameter.
- **power**: statistical power \((1 - \beta)\).
- **mdes**: minimum detectable effect size.
- **L**: number of level 4 units.

See Also

cosa.bcrd4r2

Examples

```r
# cross-checks
mdes.bcra4r2(rho4=.05, rho3=.15, rho2=.15, omega4=.50, omega3=.50, n=10, J=4, K=4, L=20)
power.bcra4r2(es = .206, rho4=.05, rho3=.15, rho2=.15, omega4=.50, omega3=.50, n=10, J=4, K=4, L=20)
msrss.bcra4r2(es = .206, rho4=.05, rho3=.15, rho2=.15, omega4=.50, omega3=.50, n=10, J=4, K=4)
```
Four-Level Blocked Cluster-level Random Assignment Design, Treatment at Level 3

Description

Use `mdes.bcra4r3()` to calculate the minimum detectable effect size, `power.bcra4r3()` to calculate the statistical power, and `mrss.bcra4r3()` to calculate the minimum required sample size.

Usage

```r
mdes.bcra4r3(power=.80, alpha=.05, two.tailed=TRUE,
    rho2, rho3, rho4, omega4,
    p=.50, r21=0, r22=0, r23=0, r2t4=0, g4=0,
    n, J, K, L)
```

```r
power.bcra4r3(es=.25, alpha=.05, two.tailed=TRUE,
    rho2, rho3, rho4, omega4,
    p=.50, r21=0, r22=0, r23=0, r2t4=0, g4=0,
    n, J, K, L)
```

```r
mrss.bcra4r3(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n, J, K, L0=10, tol=.10,
    rho2, rho3, rho4, omega4,
    p=.50, r21=0, r22=0, r23=0, r2t4=0, g4=0)
```

Arguments

- `power`: statistical power \((1 - \beta)\).
- `es`: effect size.
- `alpha`: probability of type I error.
- `two.tailed`: logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
- `rho2`: proportion of variance in the outcome between level 2 units (unconditional ICC2).
- `rho3`: proportion of variance in the outcome between level 3 units (unconditional ICC3).
- `rho4`: proportion of variance in the outcome between level 4 units (unconditional ICC4).
- `omega4`: treatment effect heterogeneity as ratio of treatment effect variance among level 4 units to the residual variance at level 4.
- `p`: average proportion of level 3 units randomly assigned to treatment within level 4 units.
- `g4`: number of covariates at level 4.
- `r21`: proportion of level 1 variance in the outcome explained by level 1 covariates.
- `r22`: proportion of level 2 variance in the outcome explained by level 2 covariates.
Two-Level Blocked (Constant Treatment Effect) Individual-level Random Assignment Design, Treatment at Level 1

Use `mdes.bira2c1()` to calculate the minimum detectable effect size, `power.bira2c1()` to calculate the statistical power, and `mrss.bira2c1()` to calculate the minimum required sample size.
Usage

```r
mdes.bira2c1(power=.80, alpha=.05, two.tailed=TRUE,
    p=.50, g1=0, r21=0,
    n, J)
```

```r
power.bira2c1(es=.25, alpha=.05, two.tailed=TRUE,
    p=.50, g1=0, r21=0,
    n, J)
```

```r
mrss.bira2c1(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
    n, J0=10, tol=.10,
    p=.50, g1=0, r21=0)
```

Arguments

- `power`: statistical power \((1 - \beta)\).
- `es`: effect size.
- `alpha`: probability of type I error.
- `two.tailed`: logical; `TRUE` for two-tailed hypothesis testing, `FALSE` for one-tailed hypothesis testing.
- `p`: average proportion of level 1 units randomly assigned to treatment within level 2 units.
- `g1`: number of covariates at level 1.
- `r21`: proportion of level 1 variance in the outcome explained by level 1 covariates.
- `n`: harmonic mean of level 1 units across level 2 units (or simple average).
- `J`: level 2 sample size.
- `J0`: starting value for \(J\).
- `tol`: tolerance to end iterative process for finding \(J\).

Value

- `fun`: function name.
- `parms`: list of parameters used in power calculation.
- `df`: degrees of freedom.
- `ncp`: noncentrality parameter.
- `power`: statistical power \((1 - \beta)\).
- `mdes`: minimum detectable effect size.
- `J`: number of level 2 units.

Examples

```r
# cross-checks
mdes.bira2c1(n=15, J=20)
power.bira2c1(es=.325, n=15, J=20)
mrss.bira2c1(es=.325, n=15)
```
Description

Use `mdes.bira2f1()` to calculate the minimum detectable effect size, `power.bira2f1()` to calculate the statistical power, and `mrss.bira2f1()` to calculate the minimum required sample size.

Usage

```r
mdes.bira2f1(power=.80, alpha=.05, two.tailed=TRUE,
              p=.50, g1=0, r21=0, n, J)
```

```r
power.bira2f1(es=.25, alpha=.05, two.tailed=TRUE,
               p=.50, g1=0, r21=0, n, J)
```

```r
mrss.bira2f1(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
             n, J0=10, tol=.10,
             p=.50, g1=0, r21=0)
```

Arguments

- **power**: statistical power \((1 - \beta)\).
- **es**: effect size.
- **alpha**: probability of type I error.
- **two.tailed**: logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
- **p**: average proportion of level 1 units randomly assigned to treatment within level 2 units.
- **g1**: number of covariates at level 1.
- **r21**: proportion of level 1 variance in the outcome explained by level 1 covariates.
- **n**: harmonic mean of level 1 units across level 2 units (or simple average).
- **J**: level 2 sample size.
- **J0**: starting value for \(J\).
- **tol**: tolerance to end iterative process for finding \(J\).

Value

- **fun**: function name.
- **parms**: list of parameters used in power calculation.
- **df**: degrees of freedom.
- **ncp**: noncentrality parameter.
power
minimum detectable effect size.

Examples

cross-checks
mdes.bira2r1(n=15, J=20)

power.bira2r1(es=.325, n=15, J=20)

mrss.bira2r1(es=.325, n=15)

bira2r1
Two-Level Blocked Individual-level Random Assignment Design, Treatment at Level 1

Description

Use mdes.bira2r1() to calculate the minimum detectable effect size, power.bira2r1() to calculate the statistical power, and mrss.bira2r1() to calculate the minimum required sample size.

Usage

mdes.bira2r1(power=.80, alpha=.05, two.tailed=TRUE,
rho2, omega2, p=.50, g2=0, r21=0, r2t2=0,
n, J)

power.bira2r1(es=.25, alpha=.05, two.tailed=TRUE,
rho2, omega2, g2=0, p=.50, r21=0, r2t2=0,
n, J)

mrss.bira2r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
n, J0=10, tol=.10,
rho2, omega2, g2=0, p=.50, r21=0, r2t2=0)

Arguments

power
statistical power \((1 - \beta)\).

es
effect size.

alpha
probability of type I error.

two.tailed
logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.

rho2
proportion of variance in the outcome between level 2 units (unconditional ICC2).

omega2
treatment effect heterogeneity as ratio of treatment effect variance among level 2 units to the residual variance at level 2.

p
average proportion of level 1 units randomly assigned to treatment within level 2 units.
g2 number of covariates at level 2.
\(r_{21} \) proportion of level 1 variance in the outcome explained by level 1 covariates.
\(r_{2t2} \) proportion of treatment effect variance among level 2 units explained by level 2 covariates.
n harmonic mean of level 1 units across level 2 units (or simple average).
J level 2 sample size.
J0 starting value for J.
tol tolerance to end iterative process for finding J.

Value

- fun function name.
- parms list of parameters used in power calculation.
- df degrees of freedom.
- ncp noncentrality parameter.
- power statistical power \((1 - \beta)\).
- mdes minimum detectable effect size.
- J number of level 2 units.

See Also
cosa.bird2r1

Examples

cross-checks
mdes.bira2r1(rho=.17, omega2=.50, n=15, J=20)
power.bira2r1(es=.366, rho2=.17, omega2=.50, n=15, J=20)
mrss.bira2r1(es=.366, rho2=.17, omega2=.50, n=15)

Three-Level Blocked Individual-level Random Assignment Design, Treatment at Level 1

Description

Use mdes.bira3r1() to calculate the minimum detectable effect size, power.bira3r1() to calculate the statistical power, and mrss.bira3r1() to calculate the minimum required sample size.
Usage

mdes.bira3r1(power=.80, alpha=.05, two.tailed=TRUE, rho2, rho3, omega2, omega3, p=.50, r21=0, r2t2=0, r2t3=0, g3=0, n, J, K)

power.bira3r1(es=.25, alpha=.05, two.tailed=TRUE, rho2, rho3, omega2, omega3, p=.50, r21=0, r2t2=0, r2t3=0, g3=0, n, J, K)

mrss.bira3r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n, J, K0=10, tol=.10, rho2, rho3, omega2, omega3, p=.50, r21=0, r2t2=0, r2t3=0, g3=0)

Arguments

power statistical power \((1 - \beta)\).

es effect size.

alpha probability of type I error.

two.tailed logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.

rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).

rho3 proportion of variance in the outcome between level 3 units (unconditional ICC3).

omega2 treatment effect heterogeneity as ratio of treatment effect variance among level 2 units to the residual variance at level 2.

omega3 treatment effect heterogeneity as ratio of treatment effect variance among level 3 units to the residual variance at level 3.

p average proportion of level 1 units randomly assigned to treatment within level 2 units.

g3 number of covariates at level 3.

r21 proportion of level 1 variance in the outcome explained by level 1 covariates.

r2t2 proportion of treatment effect variance among level 2 units explained by level 2 covariates.

r2t3 proportion of treatment effect variance among level 3 units explained by level 3 covariates.

n harmonic mean of level 1 units across level 2 units (or simple average).

J harmonic mean of level 2 units across level 3 units (or simple average).

K number of level 3 units.

K0 starting value for K.

tol tolerance to end iterative process for finding K.
Value

- fun: function name.
- params: list of parameters used in power calculation.
- df: degrees of freedom.
- ncp: noncentrality parameter.
- power: statistical power \((1 - \beta) \).
- mdes: minimum detectable effect size.
- K: number of level 3 units.

See Also

cosa.bird3r1

Examples

```r
# cross-checks
mdes.bira3r1(rhoS=.20, rho2=.15,
        omegaS=.10, omega2=.10,
        n=69, J=10, K=100)
power.bira3r1(es = .045, rhoS=.20, rho2=.15,
        omegaS=.10, omega2=.10,
        n=69, J=10, K=100)
mrss.bira3r1(es = .045, rhoS=.20, rho2=.15,
        omegaS=.10, omega2=.10,
        n=69, J=10)
```

bira4r1

Four-Level Blocked Individual-level Random Assignment Design, Treatment at Level 1

Description

Use `mdes.bira4r1()` to calculate the minimum detectable effect size, `power.bira4r1()` to calculate the statistical power, and `mrss.bira4r1()` to calculate the minimum required sample size.

Usage

```r
mdes.bira4r1(power=.80, alpha=.05, two.tailed=TRUE,
        rho2, rho3, rho4, omega2, omega3, omega4,
        p=.50, r21=0, r2t2=0, r2t3=0, r2t4=0, g4=0,
        n, J, K, L)
```

```r
power.bira4r1(es=.25, alpha=.05, two.tailed=TRUE,
        rho2, rho3, rho4, omega2, omega3, omega4,
        p=.50, r21=0, r2t2=0, r2t3=0, r2t4=0, g4=0,
        n, J, K, L)
```
mrss.bira4r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
n, J, K, L0=10, tol=.10,
rho2, rho3, rho4, omega2, omega3, omega4,
p=.50, r2t1=0, r2t2=0, r2t3=0, r2t4=0, g4=0)

Arguments

power statistical power \((1 - \beta)\).
es effect size.
alpha probability of type I error.
two.tailed logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).
rho3 proportion of variance in the outcome between level 3 units (unconditional ICC3).
rho4 proportion of variance in the outcome between level 4 units (unconditional ICC4).
omega2 treatment effect heterogeneity as ratio of treatment effect variance among level 2 units to the residual variance at level 2.
omega3 treatment effect heterogeneity as ratio of treatment effect variance among level 3 units to the residual variance at level 3.
omega4 treatment effect heterogeneity as ratio of treatment effect variance among level 4 units to the residual variance at level 4.
p average proportion of level 1 units randomly assigned to treatment within level 2 units.
g4 number of covariates at level 4.
r21 proportion of level 1 variance in the outcome explained by level 1 covariates.
r2t2 proportion of treatment effect variance among level 2 units explained by level 2 covariates.
r2t3 proportion of treatment effect variance among level 3 units explained by level 3 covariates.
r2t4 proportion of treatment effect variance among level 4 units explained by level 4 covariates.
n harmonic mean of level 1 units across level 2 units (or simple average).
J harmonic mean of level 2 units across level 3 units (or simple average).
K harmonic mean of level 3 units across level 4 units (or simple average).
L number of level 4 units.
L0 starting value for L.
tol tolerance to end iterative process for finding L.
Value

fun function name.
params list of parameters used in power calculation.
df degrees of freedom.
ncp noncentrality parameter.
power statistical power \((1 - \beta)\).
mdes minimum detectable effect size.
L number of level 4 units.

See Also

cosa.bird4r1

Examples

cross-checks
mdes.bira4r1(rho4=.05, rho3=.15, rho2=.15,
omega4=.50, omega3=.50, omega2=.50,
n=10, J=4, K=4, L=27)
power.bira4r1(es = 0.142, rho4=.05, rho3=.15, rho2=.15,
omega4=.50, omega3=.50, omega2=.50,
n=10, J=4, K=4, L=27)
mrss.bira4r1(es = 0.142, rho4=.05, rho3=.15, rho2=.15,
omega4=.50, omega3=.50, omega2=.50,
n=10, J=4, K=4)

Object Conversion

Description

Use mrss.to.mdes() to convert an object returned from MRSS functions into an object returned from MDES functions, mrss.to.power() to convert an object returned from MRSS functions into an object returned from power functions, power.to.mdes() to convert an object returned from power functions into an object returned from MDES functions, mdes.to.power() to convert an object returned from MDES functions into an object returned from power functions, and mdes.to.pctl() to convert effect sizes or an object returned from MDES functions into percentiles.

Usage

mrss.to.mdes(object)
mrss.to.power(object)
power.to.mdes(object)
mdes.to.power(object)
mdes.to.pctl(object)
Arguments

object an object returned from one of the functions in \textbf{PowerUpR} package.

Examples

design1 <- power.bira2r1(es=.15, rho2=.35, omega2=.10, n=83, J=10)
design2 <- power.to.mdes(design1)
mdes.to.pctl(design2)

cra2r2 \hspace{1cm} Two-level Cluster-randomized Trials to Detect Main, Moderation and Mediation Effects

Description

Use \texttt{mdes.}\<\texttt{design}>() to calculate minimum detectable effect size for the main effect, \texttt{mdesd.}\<\texttt{design}>() to calculate minimum detectable effect size difference for the moderation effect, \texttt{power.}\<\texttt{design}>() to calculate the statistical power, and \texttt{mrss.}\<\texttt{design}>() to calculate the minimum required sample size. Use \texttt{<output>.cra2r2()} for the main effect, \texttt{<output>.mod221()} for the moderator at level 1, \texttt{<output>.mod222()} for the moderator at level 2. Use \texttt{power.med221()} for 2-1-1 mediation, and \texttt{power.med222()} for 2-2-1 mediation.

Usage

\begin{verbatim}
mdes.cra2r2(power=.80, alpha=.05, two.tailed=TRUE,
 rho2, p=.50, g2=0, r21=0, r22=0,
 n, J)
mdesd.mod221(power=.80, alpha=.05, two.tailed=TRUE,
 rho2, omega2, g1=0, r21=0, r2m2=0,
 p=.50, q=NULL, n, J)
mdesd.mod222(power=.80, alpha=.05, two.tailed=TRUE,
 rho2, g2=0, r21=0, r22=0,
 p=.50, q=NULL, n, J)
power.cra2r2(es=.25, alpha=.05, two.tailed=TRUE,
 rho2, g2=0, p=.50, r21=0, r22=0,
 n, J)
power.mod221(es=.25, alpha=.05, two.tailed=TRUE,
 rho2, omega2, g1=0, r21=0, r2m2=0,
 p=.50, q=NULL, n, J)
power.mod222(es=.25, alpha=.05, two.tailed=TRUE,
 rho2, g2=0, r21=0, r22=0,
 p=.50, q=NULL, n, J)
\end{verbatim}
power.med211(esa, esb1, esb, escp, two.tailed = TRUE, alpha = .05, mc = FALSE, nsims = 1000, ndraws = 1000, rhom2, rho2, r21, r22, r2m1, r2m2, p, n, J)

power.med221(esa, esb, escp, two.tailed = TRUE, alpha = .05, mc = FALSE, nsims = 1000, ndraws = 1000, rho2, r22, r21, r2m2, p = .50, n, J)

mrss.cra2r2(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n, J0=10, tol=.10, rho2, g2=0, p=.50, r21=0, r22=0)

mrss.mod221(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n, J0=10, tol=.10, rho2, omegam2, g1=0, r21=0, r2m2=0, p=.50, q=NULL)

mrss.mod222(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n, J0=10, tol=.10, rho2, g2=0, r21=0, r22=0, p=.50, q=NULL)

Arguments

power statistical power \((1 - \beta)\)

es, esa, esb, esb1, esb, escp effect size for main/moderator effects, or for path coefficients a (treatment - mediator), b (level 2 mediator - outcome), b1 (level 1 mediator - outcome), B (overall mediator - outcome) or cp (direct treatment - outcome) in the mediation model.

alpha probability of type I error.

two.tailed logical; FALSE for one-tailed hypothesis testing.

r21 proportion of level 1 variance in the outcome explained by level 1 covariates.
proportion of level 2 variance in the outcome explained by level 2 covariates.

$r2m1$ proportion of mediator variance at level 1 explained by level 1 covariates.

$r2m2$ proportion of variance in the moderator (or mediator) effect that is explained by level 2 predictors. For the mediation model, proportion of mediator variance at level 2 explained by level 2 predictors.

n harmonic mean of level 1 units across level 2 units (or simple average).

J level 2 sample size.

$J0$ starting value for J.

tol tolerance to end iterative process for finding J.

mc logical; TRUE for monte carlo simulation based power.

nsims number of replications, if mc = TRUE.

ndraws number of draws from the distribution of the path coefficients for each replication, if mc = TRUE.

Value

fun function name.

parms list of parameters used in power calculation.

df degrees of freedom.

ncp noncentrality parameter.

power statistical power $(1 - \beta)$.

mdes minimum detectable effect size.

J number of level 2 units.

See Also

For a more flexible sample size determination see cosa.crd2r2.

Examples

cross-checks for the main effect
mdes.cra2r2(rho2=.17, n=15, J=20)
power.cra2r2(es=.629, rho2=.17, n=15, J=20)
mrss.cra2r2(es=.629, rho2=.17, n=15)

cross-checks for the randomly varying cont. L1 moderator effect
mdes.mod221(rho2=.17, omegam2=.10, n=15, J=20)
power.mod221(es=.3563, rho2=.17, omegam2=.10, n=15, J=20)
mrss.mod221(es=.3563, rho2=.17, omegam2=.10, n=15)

cross-checks for the non-randomly varying cont. L1 moderator effect
mdes.mod221(rho2=.17, omegam2=0, n=15, J=20)
power.mod221(es=0.2957, rho2=.17, omegam2 =0, n=15, J=20)
mrss.mod221(es=0.2957, rho2=.17, omegam2 =0, n=15)

cross-checks for the randomly varying bin. L1 moderator effect
Three-level Cluster-randomized Trials to Detect Main, Moderation, and Mediation Effects

Description

Use mdes.<design>() to calculate the minimum detectable effect size for the main effect, mdesd.<design>() to calculate the minimum detectable effect size difference for the moderation effect, power.<design>() to calculate the statistical power, and mrss.<design>() to calculate the minimum required sample size. Use <output>.cra3r3() for the main effect, <output>.mod31() for the moderator at level 1, <output>.mod32() for the moderator at level 2, <output>.mod33() for the moderator at level 3. Use power.med31() for 3-2-1 mediation.

Usage

mdes.cra3r3(power=.80, alpha=.05, two.tailed=TRUE,
 rho2, rho3, p=.50, g3=0, r21=0, r22=0, r23=0,
 n, J, K)

mdesd.mod31(power=.80, alpha=.05, two.tailed=TRUE,
rho2, rho3, omegam2=0, omegam3=0,
g1=0, r21=0, r2m2=0, r2m3=0,
p=.50, q=NULL, n, J, K)

mdesd.mod332(power=.80, alpha=.05, two.tailed=TRUE,
rho2, rho3, omegam3, g2=0, r21=0, r22=0, r2m3=0,
p=.50, q=NULL, n, J, K)

mdesd.mod333(power=.80, alpha=.05, two.tailed=TRUE,
rho2, rho3, g3=0, r21=0, r22=0, r23=0,
p=.50, q=NULL, n, J, K)

power.cra3r3(es=.25, alpha=.05, two.tailed=TRUE,
rho2, rho3, g3=0, r21=0, r22=0, r23=0,
p=.50, n, J, K)

power.mod331(es=.25, alpha=.05, two.tailed=TRUE,
rho2, rho3, omegam2, omegam3,
g1=0, r21=0, r2m2=0, r2m3=0,
p=.50, q=NULL, n, J, K)

power.mod332(es=.25, alpha=.05, two.tailed=TRUE,
rho2, rho3, omegam3, g2=0, r21=0, r22=0, r2m3=0,
p=.50, q=NULL, n, J, K)

power.mod333(es=.25, alpha=.05, two.tailed=TRUE,
rho2, rho3, g3=0, r21=0, r22=0, r23=0,
p=.50, q=NULL, n, J, K)

power.med321(esa, esB, two.tailed=TRUE, alpha=.05,
mc=FALSE, nsims=1000, ndraws=1000,
rhomSL, rho2, rho3, r2m2, r2m3, r21, r22, r23,
p=.50, n, J, K)

mrss.cra3r3(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
n, J, K0=10, tol=.10,
rho2, rho3, p=.50, g3=0, r21=0, r22=0, r23=0)

mrss.mod331(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
rho2, rho3, omegam2, omegam3,
g1=0, r21=0, r2m2=0, r2m3=0,
p=.50, q=NULL, n, J, K0=10, tol=.10)

mrss.mod332(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
rho2, rho3, omegam3, g2=0, r21=0, r22=0, r2m3=0,
p=.50, q=NULL, n, J, K0=10, tol=.10)

mrss.mod333(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
Arguments

power statistical power \((1 - \beta)\).

es, esa, esB effect size for main/moderator effects, or for path coefficients a (treatment - mediator), or B (overall mediator - outcome) in the mediation model.

alpha probability of type I error.

two.tailed logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.

rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).

rho3 proportion of variance in the outcome between level 3 units (unconditional ICC3).

rhom3 proportion of variance in the mediator between level 3 units.

omegam2 ratio of the unconditional variance in the moderator effect that is between level 2 units to the residual variance between level 2 units in the null model.

omegam3 ratio of the unconditional variance in the moderator effect that is between level 3 units to the residual variance between level 3 units in the null model.

p proportion of level 3 units randomly assigned to treatment.

q proportion of level 1, level 2, or level 3 units in the moderator subgroup.

g1 number of covariates at level 1.

g2 number of covariates at level 2.

g3 number of covariates at level 3.

r21 proportion of level 1 variance in the outcome explained by level 1 covariates.

r22 proportion of level 2 variance in the outcome explained by level 2 covariates.

r23 proportion of level 3 variance in the outcome explained by level 3 covariates.

r2m2 proportion of variance in the moderator (or mediator) effect that is explained by level 2 predictors. For the mediation model, proportion of mediator variance at level 2 explained by level 2 predictors.

r2m3 proportion of variance in the moderator (or mediator) effect that is explained by level 3 predictors. For the mediation model, proportion of aggregated mediator variance at level 3 explained by level 3 predictors.

n harmonic mean of level 1 units across level 2 units (or simple average).

J harmonic mean of level 2 units across level 3 units (or simple average).

K level 3 sample size.

K0 starting value for K.

tol tolerance to end iterative process for finding K.

mc logical; TRUE for monte carlo simulation based power.

nsims number of replications, if mc = TRUE.

ndraws number of draws from the distribution of the path coefficients for each replication, if mc = TRUE.
Value

fun function name.
params list of parameters used in power calculation.
df degrees of freedom.
cp noncentrality parameter.
power statistical power \((1 - \beta)\).
mdes minimum detectable effect size.
k number of level 3 units.

See Also

For a more flexible sample size determination see `cosa.crd3r3`.

Examples

```r
# cross-checks for the main effect
mdes.cra3r3(rhoS=.06, rhoR=.17, n=15, J=3, K=60)
power.cra3r3(es=.269, rhoS=.06, rhoR=.17, n=15, J=3, K=60)
mrss.cra3r3(es=.269, rhoS=.06, rhoR=.17, n=15, J=3)

# cross-checks for the randomly varying cont. L1 moderator effect
mdes.mod31(power=.80, alpha=.05, two.tailed=TRUE,
            rhoR=.17, rhoS=.06, omegam2=.10, omegam3=.10,
            q=NULL, n=15, J=3, K=60)
power.mod31(es=.0.1248, alpha=.05, two.tailed=TRUE,
            rhoR=.17, rhoS=.06, omegam2=.10, omegam3=.10,
            q=NULL, n=15, J=3, K=60)
mrss.mod31(es=.0.1248, alpha=.05, two.tailed=TRUE,
            rhoR=.17, rhoS=.06, omegam2=.10, omegam3=.10,
            q=TRUE, n=15, J=3)

# cross-checks for the non-randomly varying cont. L1 moderator effect
mdesd.mod31(power=.80, alpha=.05, two.tailed=TRUE,
             rhoR=.17, rhoS=.06, omegam2=0, omegam3=0,
             q=TRUE, n=15, J=3, K=60)
power.mod31(es=.0946, alpha=.05, two.tailed=TRUE,
             rhoR=.17, rhoS=.06, omegam2=0, omegam3=0,
             q=TRUE, n=15, J=3, K=60)
mrss.mod31(es=.0946, alpha=.05, two.tailed=TRUE,
             rhoR=.17, rhoS=.06, omegam2=0, omegam3=0,
             q=TRUE, n=15, J=3)

# cross-checks for the randomly varying bin. L1 moderator effect
mdesd.mod31(power=.80, alpha=.05, two.tailed=TRUE,
            rhoR=.17, rhoS=.06, omegam2=.10, omegam3=.10,
            q=.50, n=15, J=3, K=60)
power.mod31(es=.2082, alpha=.05, two.tailed=TRUE,
            rhoR=.17, rhoS=.06, omegam2=.10, omegam3=.10,
            q=.50, n=15, J=3, K=60)
```
Description

use \texttt{mdes.cra4r4()} to calculate the minimum detectable effect size, \texttt{power.cra4r4()} to calculate the statistical power, and \texttt{mrss.cra4r4()} to calculate the minimum required sample size.

Usage

\begin{verbatim}
mdes.cra4r4(power=.80, alpha=.05, two.tailed=TRUE,
 rho2, rho3, rho4, p=.50, r21=0, r22=0, r23=0, r24=0, L)

power.cra4r4(es=.25, alpha=.05, two.tailed=TRUE,
 rho2, rho3, rho4, p=.50, r21=0, r22=0, r23=0, r24=0, L)

mrss.cra4r4(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
 rho2, rho3, rho4, p=.50, r21=0, r22=0, r23=0, r24=0, L)
\end{verbatim}

Arguments

- \texttt{power} \hspace{1cm} statistical power \((1 - \beta)\).
- \texttt{es} \hspace{1cm} effect size.
- \texttt{alpha} \hspace{1cm} probability of type I error.
two.tailed logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.

rho2 proportion of variance in the outcome between level 2 units (unconditional ICC2).

rho3 proportion of variance in the outcome between level 3 units (unconditional ICC3).

rho4 proportion of variance in the outcome between level 4 units (unconditional ICC4).

p proportion of level 4 units randomly assigned to treatment.

g4 number of covariates at level 4.

r21 proportion of level 1 variance in the outcome explained by level 1 covariates.

r22 proportion of level 2 variance in the outcome explained by level 2 covariates.

r23 proportion of level 3 variance in the outcome explained by level 3 covariates.

r24 proportion of level 4 variance in the outcome explained by level 4 covariates.

n harmonic mean of level 1 units across level 2 units (or simple average).

J harmonic mean of level 2 units across level 3 units (or simple average).

K harmonic mean of level 3 units across level 4 units (or simple average).

L number of level 4 units.

L0 starting value for L.

tol tolerance to end iterative process for finding L.

Value

fun function name.

parms list of parameters used in power calculation.

df degrees of freedom.

ncp noncentrality parameter.

power statistical power \((1 - \beta) \).

mdes minimum detectable effect size.

L number of level 4 units.

See Also
cosa.crd4r4

Examples

cross-checks
mdes.cra4r4(rho4=.05, rho3=.05, rho2=.10, n=10, J=2, K=3, L=20)
power.cra4r4(es = .412, rho4=.05, rho3=.05, rho2=.10, n=10, J=2, K=3, L=20)
mrss.cra4r4(es = .412, rho4=.05, rho3=.05, rho2=.10, n=10, J=2, K=3)
Description

Use mdes.ira1r1() to calculate minimum detectable effect size, power.ira1r1() to calculate statistical power, and mrss.ira1r1() to calculate minimum required sample size.

Usage

```r
mdes.ira1r1(power=.80, alpha=.05, two.tailed=TRUE,
            p=.50, g1=0, r21=0, n)
```

```r
power.ira1r1(es=.25, alpha=.05, two.tailed=TRUE,
              p=.50, g1=0, r21=0, n)
```

```r
mrss.ira1r1(es=.25, power=.80, alpha=.05, two.tailed=TRUE,
            n0=10, tol=.10,
            p=.50, g1=0, r21=0)
```

Arguments

- `power`: statistical power \((1 - \beta)\).
- `es`: effect size.
- `alpha`: probability of type I error.
- `two.tailed`: logical; TRUE for two-tailed hypothesis testing, FALSE for one-tailed hypothesis testing.
- `p`: proportion of units randomly assigned to treatment.
- `g1`: number of covariates.
- `r21`: proportion of variance in the outcome explained by covariates.
- `n`: sample size.
- `n0`: starting value for `n`.
- `tol`: tolerance to end iterative process for finding `n`.

Value

- `fun`: function name.
- `parms`: list of parameters used in power calculation.
- `df`: degrees of freedom.
- `ncp`: noncentrality parameter.
- `power`: statistical power \((1 - \beta)\).
- `mdes`: minimum detectable effect size.
- `n`: sample size.
See Also

power.ird1r1

Examples

cross-checks
mdes.ira1r1(n=250)
power.ira1r1(es=.356, n=250)
mrss.ira1r1(es=.356)

Description

Plots statistical power, minimum detectable effect size (MDES), or MDES difference (MDESD) curves with (1-\(\alpha\))x100 % confidence interval.

Usage

```r
## S3 method for class 'power'
plot(x, ypar = "mdes", xpar = NULL,
     xlim = NULL, ylim = NULL,
     xlab = NULL, ylab = NULL,
     main = NULL, sub = NULL,
     locate = FALSE, ...)

## S3 method for class 'mdes'
plot(x, ypar = "mdes", xpar = NULL,
     xlim = NULL, ylim = NULL,
     xlab = NULL, ylab = NULL,
     main = NULL, sub = NULL,
     locate = FALSE, ...)

## S3 method for class 'mrss'
plot(x, ypar = "mdes", xpar = NULL,
     xlim = NULL, ylim = NULL,
     xlab = NULL, ylab = NULL,
     main = NULL, sub = NULL,
     locate = FALSE, ...)
```

Arguments

- `x`: an object returned from one of the `PowerUpR` functions.
- `ypar`: character; "mdes" or "power" on y axis.
- `xpar`: character; one of the sample sizes on x axis.
xlim limits for xpar.
ylim limits for ypar.
xlab x axis label (ignored for objects returned from \codes{power.med211()}, \codes{power.med221()}, and \codes{power.med321()} functions).
ylab y axis label (ignored for objects returned from \codes{power.med211()}, \codes{power.med221()}, and \codes{power.med321()} functions).
main title for the plot (ignored for objects returned from \codes{power.med221()} and \codes{power.med211()} functions).
sub subtitle for the plot (ignored for objects returned from \codes{power.med221()} and \codes{power.med211()} functions).
locate logical; \TRUE\ locates parameter values for design \(x\) on the plot.
other graphical parameters to pass to \codes{plot.new}().

Examples

\begin{verbatim}
design1 <- mdes.cra3r3(rho3=.06, rho2=.17, n=15, J=3, K=60)
plot(design1, ypar = "mdes", xpar = "K", xlim = c(30, 100))
plot(design1, ypar = "power", xpar = "K", xlim = c(30, 100))

design2 <- power.cra3r3(es=.269, rho3=.06, rho2=.17, n=15, J=3, K=60)
plot(design2, ypar = "mdes", xpar = "K", xlim = c(30, 100))
plot(design2, ypar = "power", xpar = "K", xlim = c(30, 100))
\end{verbatim}

```r

PowerUpR-deprecated

\begin{verbatim}
Deprecated and Defunct functions in \pkg{PowerUpR}

\end{verbatim}

Description

Experimental MDES functions for 2-1-1 and 2-2-1 mediations are removed.

Format

Deprecated or defunct functions are no longer documented.

Details

Defunct functions:

- \codes{mdes.med211} is defunct, there is no replacement function
- \codes{mdes.med221} is defunct, there is no replacement function
Description

t1t2.error plots Type I ($\alpha$) and Type II ($\beta$) error rates using central and noncentral t distributions for any objects returned from one of the PowerUpR functions.

Usage

t1t2.error(object)

Arguments

object an object returned from one of the PowerUpR functions.

Examples

```r
Not run:

design1 <- mdes.bira2r1(rho2=.35, omega2=.10,
n=83, J=480)
t1t2.error(design1)
```

## End(Not run)
Index

bcra3f2, 2
bcra3r2, 4
bcra4f3, 5
bcra4r2, 7
bcra4r3, 9
bira2c1, 10
bira2f1, 12
bira2r1, 13
bira3r1, 14
bira4r1, 16
conversion, 18
cosa.bcrd3r2, 5
cosa.bcrd4r2, 8
cosa.bcrd4r3, 10
cosa.bird2r1, 14
cosa.bird3r1, 16
cosa.bird4r1, 18
cosa.crd2r2, 21
cosa.crd3r3, 25
cosa.crd4r4, 27
cra2r2, 19
cra3r3, 22
cra4r4, 26
ira1r1, 28

mdes.bcra3f2(bcra3f2), 2
mdes.bcra3r2(bcra3r2), 4
mdes.bcra4f3(bcra4f3), 5
mdes.bcra4r2(bcra4r2), 7
mdes.bcra4r3(bcra4r3), 9
mdes.bira2c1(bira2c1), 10
mdes.bira2f1(bira2f1), 12
mdes.bira2r1(bira2r1), 13
mdes.bira3r1(bira3r1), 14
mdes.bira4r1(bira4r1), 16
mdes.cra2r2(cra2r2), 19
mdes.cra3r3(cra3r3), 22
mdes.cra4r4(cra4r4), 26

mdes.ira1r1(ira1r1), 28
mdes.med211(PowerUpR-deprecated), 30
mdes.med221(PowerUpR-deprecated), 30
mdes.mod221(cra2r2), 19
mdes.mod222(cra2r2), 19
mdes.mod331(cra3r3), 22
mdes.mod332(cra3r3), 22
mdes.mod333(cra3r3), 22
mdes.to.pctl(conversion), 18
mdes.to.power(conversion), 18
mdesd.mod221(cra2r2), 19
mdesd.mod222(cra2r2), 19
mdesd.mod331(cra3r3), 22
mdesd.mod332(cra3r3), 22
mrss.bcra3f2(bcra3f2), 2
mrss.bcra3r2(bcra3r2), 4
mrss.bcra4f3(bcra4f3), 5
mrss.bcia4r2(bcia4r2), 7
mrss.bcia4r3(bcia4r3), 9
mrss.bira2c1(bira2c1), 10
mrss.bira2f1(bira2f1), 12
mrss.bira2r1(bira2r1), 13
mrss.bira3r1(bira3r1), 14
mrss.bira4r1(bira4r1), 16
mrss.cra2r2(cra2r2), 19
mrss.cra3r3(cra3r3), 22
mrss.cra4r4(cra4r4), 26
mrss.ira1r1(ira1r1), 28
mrss.mod221(cra2r2), 19
mrss.mod222(cra2r2), 19
mrss.mod331(cra3r3), 22
mrss.mod332(cra3r3), 22
mrss.mod333(cra3r3), 22
mrss.to.mdes(conversion), 18
mrss.to.power(conversion), 18

plot.mdes(plots), 29
plot.mrss(plots), 29
plot.power(plots), 29
plots, 29
power.bcra3f2 (bcra3f2), 2
power.bcra3r2 (bcra3r2), 4
power.bcra4f3 (bcra4f3), 5
power.bcra4r2 (bcra4r2), 7
power.bcra4r3 (bcra4r3), 9
power.bira2c1 (bira2c1), 10
power.bira2f1 (bira2f1), 12
power.bira2r1 (bira2r1), 13
power.bira3r1 (bira3r1), 14
power.bira4r1 (bira4r1), 16
power.cra2r2 (cra2r2), 19
power.cra3r3 (cra3r3), 22
power.cra4r4 (cra4r4), 26
power.ira1r1 (ira1r1), 28
power.ird1r1, 29
power.med211 (cra2r2), 19
power.med221 (cra2r2), 19
power.med321 (cra3r3), 22
power.mod221 (cra2r2), 19
power.mod222 (cra2r2), 19
power.mod331 (cra3r3), 22
power.mod332 (cra3r3), 22
power.mod333 (cra3r3), 22
power.to.mdes (conversion), 18
PowerUpR (PowerUpR-package), 2
PowerUpR-deprecated, 30
PowerUpR-package, 2

t1t2.error, 31