Package ‘QF’

October 22, 2021

Title Density, Cumulative and Quantile Functions of Quadratic Forms
Version 0.0.6
Description The computation of quadratic form (QF) distributions is often not trivial and it re-
quires numerical routines. The package contains functions aimed at evaluating the exact distribu-
tion of quadratic forms (QFs) and ratios of QFs. In particular, we propose to evaluate den-
sity, quantile and distribution functions of positive definite QFs and ratio of independent posi-
tive QFs by means of an algorithm based on the numerical inversion of Mellin transforms.
License GPL-3
Encoding UTF-8
RoxygenNote 7.1.1
LinkingTo Rcpp, RcppGSL
Imports Rcpp
SystemRequirements GNU GSL
NeedsCompilation yes
Date 2021-10-22
Author Aldo Gardini [aut, cre],
 Fedele Greco [aut],
 Carlo Trivisano [aut]
Maintainer Aldo Gardini <aldo.gardini2@unibo.it>
Repository CRAN
Date/Publication 2021-10-22 10:00:02 UTC

R topics documented:

compute_MellinQF .. 2
compute_MellinQF_ratio .. 4
pQF_depratio ... 6
print.MellinQF ... 7
print.MellinQF_ratio ... 8
QF ... 8
QF_ratio .. 10

Index 12
compute_MellinQF
Mellin Transform of a Positive QF

Description

The function computes the Mellin transform of a positive definite quadratic form producing a MellinQF object. The output can be used to evaluate the density, cumulative and quantile functions of the target quadratic form.

Usage

```r
compute_MellinQF(
  lambdas,
  etas = rep(0, length(lambdas)),
  eps = 1e-06,
  rho = 1 - 1e-04,
  maxit_comp = 1e+05,
  eps_quant = 1e-06,
  maxit_quant = 10000,
  lambdas_tol = NULL
)
```

Arguments

- `lambdas`: vector of positive weights.
- `etas`: vector of non-centrality parameters. Default all zeros (central chi square).
- `eps`: required absolute error for density and cumulative functions.
- `rho`: distribution total probability mass for which it is desired to keep the error `eps`.
- `maxit_comp`: maximum number of iterations.
- `eps_quant`: required numerical error for quantile computation.
- `maxit_quant`: maximum number of iterations before stopping the quantile computation.
- `lambdas_tol`: maximum value admitted for the weight skewness. When it is not NULL (default), elements of `lambdas` such that the ratio max(lambdas)/lambdas is greater than the specified value are removed.

Details

The quadratic form having positive weights `lambdas` and non-centrality parameters `etas` is considered:

\[
Q = \sum_{i=1}^{r} \lambda_i X_1^{2, \eta_i}.
\]

Its Mellin transform is computed by exploiting the density formulation by Ruben (1962). The numerical error is controlled in order to provide the requested precision (`eps`) for the interval of quantiles that contains the specified total probability `rho`.
The argument `eps_quant` controls the relative precision requested for the computation of quantiles that determine the range in which the error `eps` is guaranteed, whereas `maxit_quant` sets the maximum number of Newton-Raphson iterations of the algorithm.

Value

The function returns an object of the class `MellinQF` that contains information on the Mellin transform of a linear combination of positively weighted chi-square random variables. This information can be used in order to evaluate the density, cumulative distribution and quantile functions.

An object of the class `MellinQF` has the following components:

- `range_q`: the range of quantiles that contains the specified mass of probability `rho` in which it is possible to compute density and CDF preserving the error level `eps`.
- `Mellin`: a list containing the values of the Mellin transform (`Mellin`), the corresponding evaluation points (`z`), the integration step `delta` and the lowest weight (`lambda_min`).
- The inputs `rho`, `lambdas`, `etas`, `eps` needed for CDF, PDF and quantile function computation.

Source

See Also

The function `print.MellinQF` can be used to summarize the basic information on the Mellin transform.

The object can be used in the function `dQF` to compute the density function of the QF, `pQF` for the CDF and `qQF` for the quantile function.

Examples

```r
library(QF)
# Definition of the QF
lambdas_QF <- c(rep(7, 6), rep(3, 2))
etas_QF <- c(rep(6, 6), rep(2, 2))
# Computation Mellin transform
eps <- 1e-7
rho <- 0.999
Mellin <- compute_MellinQF(lambdas_QF, etas_QF, eps = eps, rho = rho)
print(Mellin)
```
compute_MellinQF_ratio

Mellin Transform of the Independent Positive QFs Ratio

Description

The function computes the Mellin transform of the ratio of independent and positive definite quadratic forms producing a MellinQF_ratio object. The output can be used to evaluate the density, cumulative and quantile functions of the target quadratic form.

Usage

```r
compute_MellinQF_ratio(
  lambdas_num,
  lambdas_den,
  etas_num = rep(0, length(lambdas_num)),
  etas_den = rep(0, length(lambdas_den)),
  eps = 1e-06,
  rho = 1 - 1e-04,
  maxit_comp = 1e+05,
  eps_quant = 1e-06,
  maxit_quant = 10000,
  lambdas_tol = NULL
)
```

Arguments

- `lambdas_num`: vector of positive weights for the numerator.
- `lambdas_den`: vector of positive weights for the denominator.
- `etas_num`: vector of non-centrality parameters for the numerator. Default all zeros (central chi square).
- `etas_den`: vector of non-centrality parameters for the denominator. Default all zeros (central chi square).
- `eps`: required absolute error for density and cumulative functions.
- `rho`: distribution total probability mass for which it is desired to keep the error `eps`.
- `maxit_comp`: maximum number of iterations.
- `eps_quant`: required numerical error for quantile computation.
- `maxit_quant`: maximum number of iterations before stopping the quantile computation.
- `lambdas_tol`: maximum value admitted for the weight skewness for both the numerator and the denominator. When it is not NULL (default), elements of `lambdas` such that the ratio `max(lambdas)/lambdas` is greater than the specified value are removed.
compute_MellinQF_ratio

Details

The Mellin transform of the ratio of two independent quadratic forms having positive weights \(\lambda_{\text{num}} \) and \(\lambda_{\text{den}} \) and non-centrality parameters \(\eta_{\text{num}} \) and \(\eta_{\text{den}} \) is computed exploiting the density formulation by Ruben (1962). The numerical error is controlled in order to provide the requested precision \(\epsilon \) for the interval of quantiles that contains the specified total probability \(\rho \).

The argument \(\epsilon_{\text{quant}} \) controls the relative precision requested for the computation of quantiles that determine the range in which the error \(\epsilon \) is guaranteed, whereas \(\text{maxit}_{\text{quant}} \) sets the maximum number of Newton-Raphson iterations of the algorithm.

Value

The function returns an object of the class `MellinQF_ratio` that contains information on the Mellin transform of the ratio of two linear combinations of positively weighted chi-square random variables. This information can be used in order to evaluate the density, cumulative distribution and quantile functions of the desired quadratic form.

An object of the class `MellinQF_ratio` has the following components:

- \(\text{range}_q \): the range of quantiles that contains the specified mass of probability \(\rho \) in which it is possible to compute density and CDF preserving the error level \(\epsilon \).
- \(\text{Mellin} \): a list containing the values of the Mellin transform (Mellin), the corresponding evaluation points \(z \), the integration step \(\delta \) and the lowest numerator weight \(\lambda_{\text{min}} \).
- the inputs \(\rho, \lambda_{\text{num}}, \lambda_{\text{den}}, \eta_{\text{num}}, \eta_{\text{den}}, \epsilon \) needed for CDF, PDF and quantile function computation.

Source

See Also

The function `print.MellinQF_ratio` can be used to summarize the basic information on the Mellin transform.

The object can be used in the function `dQF_ratio` to compute the density function of the QFs ratio, `pQF_ratio` for the CDF and `qQF_ratio` for the quantile function.

Examples

```r
library(QF)
# Definition of the QFs
lambdas_QF_num <- c(rep(7, 6), rep(3, 2))
etas_QF_num <- c(rep(6, 6), rep(2, 2))
lambdas_QF_den <- c(0.6, 0.3, 0.1)
# Computation Mellin transform
```
eps <- 1e-7
rho <- 0.999
Mellin_ratio <- compute_MellinQF_ratio(lambdas_QF_num, lambdas_QF_den,
 etas_QF_num, eps = eps, rho = rho)
print(Mellin_ratio)

pQF_depratio

Cumulative Distribution Function of the Dependent QFs Ratio

Description

The function computes the CDF of the ratio of two dependent and possibly indefinite quadratic forms.

Usage

```r
pQF_depratio(
  q = NULL,
  lambdas = NULL,
  A = NULL,
  B = NULL,
  eps = 1e-06,
  maxit_comp = 1e+05,
  lambdas_tol = NULL
)
```

Arguments

- `q` quantile.
- `lambdas` vector of eigenvalues of the matrix $(A-qB)$.
- `A` matrix of the numerator QF. If not specified but B is passed, it is assumed to be the identity.
- `B` matrix of the numerator QF. If not specified but A is passed, it is assumed to be the identity.
- `eps` requested absolute error.
- `maxit_comp` maximum number of iterations.
- `lambdas_tol` maximum value admitted for the weight skewness for both the numerator and the denominator. When it is not NULL (default), elements of lambdas such that the ratio max(lambdas)/lambdas is greater than the specified value are removed.
Details

The distribution function of the following ratio of dependent quadratic forms is computed:

\[P \left(\frac{Y^T A Y}{Y^T B Y} < q \right) , \]

where \(Y \sim N(0, I) \).

The transformation to the following indefinite quadratic form is exploited:

\[P \left(Y^T (A - qB) Y < 0 \right) . \]

The following inputs can be provided:

- vector `lambdas` that contains the eigenvalues of the matrix \((A - qB)\). Input `q` is ignored.
- matrix `A` and/or matrix `B`: in these cases `q` is required to be not null and an eventual missing specification of one matrix make it equal to the identity.

Value

The values of the CDF at quantiles `q`.

print.MellinQF

Printing MellinQF

Description

It allows to visualize useful information on the MellinQF object.

Usage

```r
## S3 method for class 'MellinQF'
print(x, digits = 3L, ...)
```

Arguments

- `x` MellinQF object.
- `digits` number of digits to display in the output.
- `...` potentially more arguments passed to methods.
print.MellinQF_ratio

Print MellinQF_ratio

Description

It allows to visualize useful information on the MellinQF_ratio object.

Usage

S3 method for class 'MellinQF_ratio'
print(x, digits = 3L, ...)

Arguments

- **x**: MellinQF_ratio object.
- **digits**: number of digits to display in the output.
- **...**: potentially more arguments passed to methods.

QF

Positive Definite Quadratic Forms Distribution

Description

Density function, distribution function, quantile function and random generator for positive definite QFs.

Usage

dQF(x, obj)
pQF(q, obj)
qQF(p, obj, eps_quant = 1e-06, maxit_quant = 10000)
rQF(n, lambdas, etas = rep(0, length(lambdas)))

Arguments

- **x**, **q**: vector of quantiles.
- **obj**: MellinQF object produced by the `compute_MellinQF` function.
- **p**: vector of probabilities.
- **eps_quant**: relative error for quantiles.
- **maxit_quant**: maximum number of Newton-Raphson iterations allowed to compute quantiles.
- **n**: number of observations.
- **lambdas**: vector of positive weights.
- **etas**: vector of non-centrality parameters. Default all zeros.
Details

The quadratic form CDF and PDF are evaluated by numerical inversion of the Mellin transform. The absolute error specified in `compute_MellinQF` is guaranteed for values of q and x inside the range_q. If the quantile is outside range_q, computations are carried out, but a warning is sent.

The function uses the Newton-Raphson algorithm to compute the QF quantiles related to probabilities p.

Value

dQF provides the values of the density function at a quantile x.
pQF provides the cumulative distribution function at a quantile q.
qQF provides the quantile corresponding to a probability level p.
rQF provides a sample of n independent realizations from the QF.

See Also

See `compute_MellinQF` for details on the Mellin computation.

Examples

```r
library(QF)
# Definition of the QF
lambdas_QF <- c(rep(7, 6), rep(3, 2))
etas_QF <- c(rep(6, 6), rep(2, 2))
# Computation Mellin transform
eps <- 1e-7
rho <- 0.999
Mellin <- compute_MellinQF(lambdas_QF, etas_QF, eps = eps, rho = rho)
xs <- seq(Mellin$range_q[1], Mellin$range_q[2], l = 100)
# PDF
ds <- dQF(xs, Mellin)
plot(xs, ds, type="l")
# CDF
ps <- pQF(xs, Mellin)
plot(xs, ps, type="l")
# Quantile
qs <- qQF(ps, Mellin)
plot(ps, qs, type="l")
# Comparison computed quantiles vs real quantiles
plot((qs - xs) / xs, type = "l")
```
QF_ratio

Ratio of Positive Definite Quadratic Forms Distribution

Description
Density function, distribution function, quantile function and random generator for the ratio of positive definite QFs.

Usage

```r
dQF_ratio(x, obj)
pQF_ratio(q, obj)
qQF_ratio(p, obj, eps_quant = 1e-06, maxit_quant = 10000)
rQF_ratio(
  n,
  lambdas_num,
  lambdas_den,
  etas_num = rep(0, length(lambdas_num)),
  etas_den = rep(0, length(lambdas_den))
)
```

Arguments

- `x, q`: vector of quantiles.
- `obj`: MellinQF_ratio object produced by the `compute_MellinQF_ratio` function.
- `p`: vector of probabilities.
- `eps_quant`: relative error for quantiles.
- `maxit_quant`: maximum number of Newton-Raphson iterations allowed to compute quantiles.
- `n`: number of observations.
- `lambdas_num`: vector of positive weights of the QF at the numerator.
- `lambdas_den`: vector of positive weights of the QF at the denominator.
- `etas_num`: vector of non-centrality parameters of the QF at the numerator. Default all zeros.
- `etas_den`: vector of non-centrality parameters of the QF at the denominator. Default all zeros.

Details
The CDF and PDF of the ratio of positive QFs are evaluated by numerical inversion of the Mellin transform. The absolute error specified in `compute_MellinQF_ratio` is guaranteed for values of `q` and `x` inside `range_q`. If the quantile is outside `range_q`, computations are carried out, but a warning is sent.

The function uses the Newton-Raphson algorithm to compute the ratio of QFs quantiles related to probabilities `p`.

QF_ratio

Value

- `dQF_ratio` provides the values of the density function at a quantile `x`.
- `pQF_ratio` provides the cumulative distribution function at a quantile `q`.
- `qQF_ratio` provides the quantile corresponding to a probability level `p`.
- `rQF_ratio` provides a sample of `n` independent realizations the QFs ratio.

See Also

See `compute_MellinQF_ratio` for details on the Mellin computation.

Examples

```r
lambdas_QF_num <- c(rep(7, 6), rep(3, 2))
etas_QF_num <- c(rep(6, 6), rep(2, 2))
lambdas_QF_den <- c(0.6, 0.3, 0.1)
# Computation Mellin transform
eps <- 1e-7
rho <- 0.999
Mellin_ratio <- compute_MellinQF_ratio(lambdas_QF_num, lambdas_QF_den,
etas_QF_num, eps = eps, rho = rho)
xs <- seq(Mellin_ratio$range_q[1], Mellin_ratio$range_q[2], l = 100)
# PDF
ds <- dQF_ratio(xs, Mellin_ratio)
plot(xs, ds, type="l")
# CDF
ps <- pQF_ratio(xs, Mellin_ratio)
plot(xs, ps, type="l")
# Quantile
qs <- qQF_ratio(ps, Mellin_ratio)
plot(ps, qs, type="l")
# Comparison computed quantiles vs real quantiles
plot((qs - xs) / xs, type = "l")
```
Index

compute_MellinQF, 2, 8, 9
compute_MellinQF_ratio, 4, 10, 11

dQF, 3
dQF (QF), 8
dQF_ratio, 5
dQF_ratio (QF_ratio), 10

pQF, 3
cpQF (QF), 8
pQF_depratio, 6
pQF_ratio, 5
pQF_ratio (QF_ratio), 10
print.MellinQF, 3, 7
print.MellinQF_ratio, 5, 8

QF, 8
QF_ratio, 10

cqQF, 3
cqQF (QF), 8
cqQF_ratio, 5
cqQF_ratio (QF_ratio), 10

rQF (QF), 8
rQF_ratio (QF_ratio), 10