Package ‘QHScrnomo’

November 5, 2021

Type Package
Title Construct Nomogram for Competing Risk Models
Version 2.2.0
Date 2021-10-27
Depends R (>= 3.5.0), Hmisc, rms, cmprsk
Suggests rmarkdown, knitr, survival
Description Nomogram is constructed to predict cumulative incidence rate, which is calculated by adjusting for competing causes other than that of interest. K-fold cross-validation function is implemented to validate the performance. Competing risk version of concordance index is calculated. Methods are as described in: Kattan MW, Heller G, Brennan MF (2003) <doi:10.1002/sim.1574>.
License GPL-2
NeedsCompilation yes
Config/testthat/edition 3
RoxygenNote 7.1.2
VignetteBuilder knitr
Encoding UTF-8
Author Michael Kattan [aut],
 Changhong Yu [aut],
 Xinge Ji [cre]
Maintainer Xinge Ji <jix@ccf.org>
Repository CRAN
Date/Publication 2021-11-05 13:20:02 UTC

R topics documented:

 addOffset4ModelFrame ... 2
 anova.cmprsk .. 3
 cinindex ... 4
addOffset4ModelFrame

Internal function to Calculate Offset for Data

Description

Internal function to Calculate Offset for Data

Usage

addOffset4ModelFrame(Terms, newdata, offset = 0)

Arguments

Terms term value
newdata data frame for prediction. Each row of the data frame contains values of covariates that are required in the crr model. If missing, the original data set that was used to develop the crr model will be used for prediction.
offset offset value

Details

Internally calculate offset for a data

Value

newdata
anova.cmprsk

anova table for competing risks regression

Description

generate anova table for crr

Usage

S3 method for class 'cmprsk'
anova(object, ...)

Arguments

object
a competing risks regression model object built from function crr.fit

...
other arguments

Details

generate anova table for competing risks regression model

Value

anova table in matrix

Examples

data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) +
 BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) +
 RACE_AA, data = prostate.dat,
 x = TRUE, y= TRUE, surv=TRUE,time.inc = 144)
prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)
anova test
anova(prostate.crr)
Description

Calculate concordance index

Usage

cindex(
 prob, fstatus, ftime,
 type = "crr", failcode = 1,
 cencode = 0,
 tol = 1e-20
)

Arguments

- **prob**: predicted risk of failure event, either probability or risk score
- **fstatus**: failure(event) variable
- **ftime**: follow-up time variable for survival or competing risks predictions
- **type**: type of regression models corresponding to different type of outcomes. ‘logis’ is the default value for binary outcome, ‘surv’ for ordinary survival outcome and ‘crr’ for competing risks outcome.
- **failcode**: coding for failure(event). 1 is the default value.
- **cencode**: coding for censoring. 0 is the default.
- **tol**: error tolerance. The default value is 1e-20.

Details

to calculate the discrimination metric, concordance index for binary, time-to event and competing risks outcomes

Value

A vector of returned values.

- **N**: the total number of observations in the input data
- **n**: the nonmissing number of observations that was used for calculation
- **usable**: the total number of usable pairs.
- **concordant**: the number of concordant pairs
- **cindex**: the concordance index that equal to the number of concordant pairs divided by the total number of usable pairs.
crr.fit

Fit Competing Risks Regression Model

Fits a competing risks regression model from an existing Cox proportional hazards object and allows a nomogram to be constructed from the competing risks regression object.

Description

This function uses the `crr` function in the `cmprsk` package to construct a competing risk regression object.

Usage

```r
crr.fit(fit, cencode = 0, failcode = 1)
```

Arguments

- `fit`: a Cox proportional hazards regression model constructed from `cph` in `rms` library (by Frank Harrell)
- `cencode`: the value of the status indicator that indicates a censored observation
- `failcode`: the value of the status indicator that indicates an event of interest

Examples

```r
data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT, EVENT_DOD == 1) ~ TX + rcs(PSA,3) +
                 BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) +
                 RACE_AA, data = prostate.dat,
                 x = TRUE, y= TRUE, surv=TRUE, time.inc = 144)
prostate.crr <- crr.fit(prostate.f, cencode = 0, failcode = 1)

## ten fold cross validation
prostate.dat$preds.tenf.cv.prostate.crr.120 <-
  tenf.crr(prostate.crr, time = 120)

## calculate the CRR version of concordance index
with(prostate.dat, cindex(preds.tenf.cv.prostate.crr.120 ,
                         ftime = TIMEEVENT,
                         fstatus = EVENT_DOD, type = "crr"))['cindex']
```
Value

Returns a list of class cmprsk, with components:

c\text{coef} \quad \text{the estimated regression coefficients}
loglik \quad \text{log pseudo-likelihood evaluated at } \text{coef}
lscore \quad \text{derivitives of the log pseudo-likelihood evaluated at } \text{coef}
inf \quad \text{-second derivatives of the log pseudo-likelihood}
var \quad \text{estimated variance covariance matrix of } \text{coef}
res \quad \text{matrix of residuals giving the contribution to each score (columns) at each unique failure time (rows)}
uftime \quad \text{vector of unique failure times}
bfitj \quad \text{jumps in the Breslow-type estimate of the underlying sub-distribution cumulative hazard (used by predict.crr())}
tfs \quad \text{the tfs matrix (output of tf(), if used)}
converged \quad \text{TRUE if the iterative algorithm converged.}
cencode \quad \text{the value of the status indicator that indicates a censored observation}
failcode \quad \text{the value of the status indicator that indicates an event of interest}
c\text{ph.f} \quad \text{regular survival model fitted by cph which is saved for function nomogram.crr to adjust lp for competing risks}
c\text{phdat} \quad \text{data used for cph model, where all predictors are represented in numeric format, which is used by function tenf.crr to do ten fold cross-validation}

Note

This function requires that the rms and cmprsk libraries are attached.

Author(s)

Michael W. Kattan, Ph.D. and Changhong Yu. Department of Quantitative Health Sciences, Cleveland Clinic

References

See Also

cph crr nomogram.crr
Examples

data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) +
BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) +
RACE_AA, data = prostate.dat,
 x = TRUE, y = TRUE, surv = TRUE, time.inc = 144)
prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)
anova test
anova(prostate.crr)
hazards ratio
summary(prostate.crr)

ten fold cross validation
prostate.dat$preds.tenf.cv.prostate.crr.120 <-
 tenf.crr(prostate.crr,time = 120)

make a CRR nomogram
nomogram.crr(prostate.crr,failtime = 120,lp=FALSE,
funlabel = "Predicted 10-year cumulative incidence")

calculate the CRR version of concordance index
with(prostate.dat, cindex(preds.tenf.cv.prostate.crr.120 ,
 ftime = TIME_EVENT,
 fstatus =EVENT_DOD, type = "crr"))["cindex"]

generate the calibration curve for predicted 10-year cancer
specific mortality
with(prostate.dat,
 groupci(preds.tenf.cv.prostate.crr.120 , ftime = TIME_EVENT,
 fstatus =EVENT_DOD, g = 5, u = 120,
 xlab = "Nomogram predicted 10-year cancerspecific mortality",
 ylab = "Observed predicted 10-year cancerspecific mortality")
)

Description

Cumulative Incidence Estimates vs. a Continuous Variable
Usage

groupci(
 x, ftime, fstatus, cencode = 0, failcode = 1, ci = TRUE, m = 50,
 g, cuts, u, pl = TRUE, conf.int = 0.95, xlab, ylab, xlim = c(0, 1),
 ylim = c(0, 1), lty = 1, add = FALSE, cex.subtitle = FALSE,
 ab = TRUE, ...
)

Arguments

 x a continuous variable
 ftime vector of follow-up time
 fstatus vector of failure status
 cencode value indicating cencering.
 failcode value indicating event of interest
 ci logical flag to output event free probability if setting FALSE
 m desired minimum number of observations in a group
 g number of quantile groups
 cuts actual cuts in x, e.g. c(0, 1, 2) to use [0,1), [1,2].
 u time for which to estimate cumulative incidence
 pl TRUE to plot results
 conf.int defaults to .95 for 0.95 confidence bars. Set to FALSE to suppress bars
 xlab if pl=TRUE, is x-axis label. Default is label(x) or name of calling argument
 ylab if pl=TRUE, is y-axis label. Default is constructed from u and time units
 xlim range of x axis
 ylim range of y axis
groupci

lty line type for primary line connecting estimates
add set to TRUE if adding to an existing plot
cex.subtitle character size for subtitle. Default is .7. Use FALSE to suppress subtitle.
ab TRUE to add a 45 degree line
... plotting parameters to pass to the plot and errbar functions

Details

Function to divide a continuous variable \(x \) (e.g. age, or predicted cumulative incidence at time \(u \) created by predict.cmprsk into \(g \) quantile groups, get cumulative incidence estimates at time \(u \) (a scaler), and to return a matrix with columns \(x=\text{mean } x \text{ in quantile}, n=\text{number of subjects}, events=\text{no. events, and ci}= \text{cumulative incidence at time } u, \text{ std.err }= \text{standard error. Instead of supplying } g \text{, the user can supply the minimum number of subjects to have in the quantile group (m, default=50). If cuts is given (e.g. cuts=c(0,.1,.2,...{},.9,.1)), it overrides m and g.}

Value

matrix with columns named \(x \) (mean predictor value in interval), \(n \) (sample size in interval), \(events \) (number of events in interval), \(ci \) (cumulative incidence estimate), \(std.err \) (standard error of cumulative incidence)

Note

This function is adapted from Harrell’s function.

Author(s)

Changhong Yu, Michael Kattan, Ph.D
Department of Quantitative Health Sciences
Cleveland Clinic

See Also

cuminc, pred.ci

Examples

data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) +
 BX,GLSN_CAT + CLIN_STG + rcs(AGE,3) +
 RACE_AA, data = prostate.dat,
 x = TRUE, y = TRUE, surv=TRUE, time.inc = 144)
prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)

ten fold cross validation
Newlabels.cmprsk

Change predictor labels for a model fit

Description

Change labels of predictors

Usage

S3 method for class 'cmprsk'
Newlabels(fit, labels, ...)

Arguments

fit a model fit
labels a character vector specifying new labels for variables in a fit. To give new
 labels for all variables, you can specify labels of the form labels=c("Age in
 Years","Cholesterol"), where the list of new labels is assumed to be the length
 of all main effect-type variables in the fit and in their original order in the model
 formula. You may specify a named vector to give new labels in random order or
 for a subset of the variables, e.g., labels=c(age="Age in Years",chol="Cholesterol")
...
other arguments

Details

This method function was written for competing risks regression model for facilitating to change
the labels of predictors when construct a nomogram. It is used for the generic function Newlabels

Value

a new model fit object with the levels adjusted.
Examples

data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) +
 BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) +
 RACE_AA, data = prostate.dat,
 x = TRUE, y = TRUE, surv=TRUE,time.inc = 144)
prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)
prostate.g <- Newlabels(prostate.crr,
 c(TX = 'Treatment options',
 BX_GLSN_CAT = 'Biopsy Gleason Score Sum',
 CLIN_STG = 'Clinical stage'))

Description

'Change levels of categorical variable

Usage

S3 method for class 'cmprsk'
Newlevels(fit, levels, ...)

Arguments

fit a model fit
levels a list of named vectors specifying new level labels for categorical predictors. This will override parms as well as datadist information (if available) that were stored with the fit.
... other arguments

Details

This method function was written for competing risks regression model for facilitating to change the levels of categorical predictors when construct a nomogram. It is used for the generic function Newlevels

Value

returns a new model fit object with the levels adjusted.
Examples

```r
data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) +
                 BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) +
                 RACE_AA, data = prostate.dat,
                 x = TRUE, y = TRUE, surv=TRUE,time.inc = 144)
prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)
prostate.g <- Newlevels(prostate.crr,
                        list(TX=c('Treatment 1','Treatment 2', 'Treatment 3')))```

nomo2.crr

<table>
<thead>
<tr>
<th>Estimate Cumulative Incidence Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calculate Estimated Cumulative Incidence Rate Calculate predicted cumulative incidence rate based on a competing risks regression model.</td>
</tr>
<tr>
<td>Usage</td>
</tr>
<tr>
<td>nomo2.crr(x, f.crr, time)</td>
</tr>
<tr>
<td>Arguments</td>
</tr>
<tr>
<td>x a vector of sum of linear predictors for each subject.</td>
</tr>
<tr>
<td>f.crr a saved model fitted by function crr.fit</td>
</tr>
<tr>
<td>time expected evaluation time</td>
</tr>
<tr>
<td>Details</td>
</tr>
<tr>
<td>This function is usually used to transform regular failure probabilities to competing risks adjusted probabilities, when a nomogram of competing risks regression model is constructed started from a regular survival model. It is not often called externally.</td>
</tr>
<tr>
<td>Value</td>
</tr>
<tr>
<td>a vector with each element being the predicted cumulative incidence rate at the expected time.</td>
</tr>
<tr>
<td>Note</td>
</tr>
<tr>
<td>internal function</td>
</tr>
</tbody>
</table>
Author(s)

Michael W. Kattan, Ph.D. and Changhong Yu.
Department of Quantitative Health Sciences, Cleveland Clinic

See Also

pred2.crr crr.fit crr

nomogram.crr     Draw a Nomogram

Description

Draws a partial nomogram that can be used to manually obtain predicted values from a regression model that was fitted with rms in effect.

Usage

nomogram.crr(
  fit,
  failtime = NULL,
  ci = TRUE,
  ..., 
  adj.to,
  lp = TRUE,
  lp.at,
  lplabel = "Linear Predictor",
  fun.at,
  fun.lp.at,
  funlabel = "Predicted Value",
  fun.side,
  interact = NULL,
  intercept = 1,
  conf.int = FALSE,
  col.conf = c(1, 12),
  conf.space = c(0.08, 0.2),
  conf.lp = c("representative", "all", "none"),
  est.all = TRUE,
  abbrev = FALSE,
  minlength = 4,
  maxscale = 100,
  nint = 10,
  label.every = 1,
  force.label = FALSE,
  xfrac = 0.35,
  cex.axis = 0.85,
  cex.var = 1,
)
Arguments

- **fit**: a competing risks regression model fit that was created with function `crr.fit`.
- **failtime**: the expected failure time for calculating cumulative incidence.
- **ci**: logical flag to output cumulative incidence or event free probability if setting `FALSE`.
- **...**: settings of variables to use in constructing axes. If datadist was in effect, the default is to use `pretty(range of continuous variables, nint)` for continuous variables, and the class levels for discrete ones. For legend.nomabbrev, ... specifies optional parameters to pass to legend. Common ones are `bty = "n"` to suppress drawing the box. You may want to specify a non-proportionally spaced font (e.g., courier) number if abbreviations are more than one letter long. This will make the abbreviation definitions line up (e.g., specify font = 2, the default for courier). Ignored for print.
- **adj.to**: If you didn’t define datadist for all predictors, you will have to define adjustment settings for the undefined ones, e.g. `adj.to=list(age=50,sex="female")`.
- **lp**: Set to `FALSE` to suppress creation of an axis for scoring $X\beta$.
- **lp.at**: If `lp=TRUE`, `lp.at` may specify a vector of settings of $X\beta$. Default is to use `pretty(range of linear predictors,nint)`.
- **lplabel**: label for linear predictor axis. Default is "Linear Predictor".
- **fun.at**: function values to label on axis. Default `fun` evaluated at `lp.at`. If more than one `fun` was specified, using a vector for `fun.at` will cause all functions to be evaluated at the same argument values. To use different values, specify a list of vectors for `fun.at`, with elements corresponding to the different functions (lists of vectors also applies to `fun.lp.at` and `fun.side`).
- **fun.lp.at**: If you want to evaluate one of the functions at a different set of linear predictor values than may have been used in constructing the linear predictor axis,
specify a vector or list of vectors of linear predictor values at which to evaluate the function. This is especially useful for discrete functions. The presence of this attribute also does away with the need for nomogram to compute numerical approximations of the inverse of the function. It also allows the user-supplied function to return factor objects, which is useful when e.g. a single tick mark position actually represents a range. If the fun.lp.at parameter is present, the fun.at vector for that function is ignored.

funlabel label for fun axis. If more than one function was given but funlabel is of length one, it will be duplicated as needed. If fun is a list of functions for which you specified names (see the final example below), these names will be used as labels.

fun.side a vector or list of vectors of side parameters for the axis function for labeling function values. Values may be 1 to position a tick mark label below the axis (the default), or 3 for above the axis. If for example an axis has 5 tick mark labels and the second and third will run into each other, specify fun.side=c(1,1,3,1,1) (assuming only one function is specified as fun).

interact When a continuous variable interacts with a discrete one, axes are constructed so that the continuous variable moves within the axis, and separate axes represent levels of interacting factors. For interactions between two continuous variables, all but the axis variable must have discrete levels defined in interact. For discrete interacting factors, you may specify levels to use in constructing the multiple axes. For continuous interacting factors, you must do this. Examples: interact=list(age=seq(10,70,by=10),treat=c("A","B","D")).

intercept for models such as the ordinal logistic model with multiple intercepts, specifies which one to use in evaluating the linear predictor.

conf.int confidence levels to display for each scoring. Default is FALSE to display no confidence limits. Setting conf.int to TRUE is the same as setting it to c(0.7, 0.9), with the line segment between the 0.7 and 0.9 levels shaded using gray scale.

col.conf colors corresponding to conf.int. Use fractions for gray scale (for UNIX S-PLUS).

conf.space a 2-element vector with the vertical range within which to draw confidence bars, in units of 1=spacing between main bars. Four heights are used within this range (8 for the linear predictor if more than 16 unique values were evaluated), cycling them among separate confidence intervals to reduce overlapping.

conf.lp default is "representative" to group all linear predictors evaluated into deciles, and to show, for the linear predictor confidence intervals, only the mean linear predictor within the deciles along with the median standard error within the deciles. Set conf.lp="none" to suppress confidence limits for the linear predictors, and to "all" to show all confidence limits.

est.all To plot axes for only the subset of variables named in ..., set est.all=FALSE. Note: This option only works when zero has a special meaning for the variables that are omitted from the graph.

abbrev Set to TRUE to use the abbreviate function to abbreviate levels of categorical factors, both for labeling tick marks and for axis titles. If you only want to abbreviate certain predictor variables, set abbrev to a vector of character strings containing their names.
minlength applies if abbrev=TRUE. Is the minimum abbreviation length passed to the abbreviate function. If you set minlength=1, the letters of the alphabet are used to label tick marks for categorical predictors, and all letters are drawn no matter how close together they are. For labeling axes (interaction settings), minlength=1 causes minlength=4 to be used.

maxscale default maximum point score is 100

nint number of intervals to label for axes representing continuous variables. See pretty.

label.every Specify label.every=i to label on every ith tick mark.

force.label set to TRUE to force every tick mark intended to be labeled to have a label plotted (whether the labels run into each other or not)

xfrac fraction of horizontal plot to set aside for axis titles

cex.axis character size for tick mark labels

cex.var character size for axis titles (variable names)

col.grid If col.grid=1, no gray scale is used, but an ordinary line is drawn. If 0<col.grid<1, a col (gray scale) of col.grid is used to draw vertical reference lines for major axis divisions and col.grid/2 for minor divisions. The default is col.grid=FALSE, i.e., reference lines are omitted. Specifying col.grid=TRUE is the same as specifying a gray scale level of col.grid=.2 (5 for Windows S-PLUS).

vnames By default, variable labels are used to label axes. Set vnames="names" to instead use variable names.

varname.label In constructing axis titles for interactions, the default is to add "(interacting.varname=level)" on the right. Specify varname.label=FALSE to instead use "(level)".

varname.label.sep If varname.label=TRUE, you can change the separator to something other than = by specifying this parameter.

ia.space When multiple axes are draw for levels of interacting factors, the default is to group combinations related to a main effect. This is done by spacing the axes for the second to last of these within a group only 0.7 (by default) of the way down as compared with normal space of 1 unit.

tck see tck under par

lmgp spacing between numeric axis labels and axis (see par for mgp)

omit vector of character strings containing names of variables for which to suppress drawing axes. Default is to show all variables.

naxes maximum number of axes to allow on one plot. If the nomogram requires more than one "page", the "Points" axis will be repeated at the top of each page when necessary.

points.label a character string giving the axis label for the points scale

total.points.label a character string giving the axis label for the total points scale

total.sep.page set to TRUE to force the total points and later axes to be placed on a separate page
total.fun  a user-provided function that will be executed before the total points axis is drawn. Default is not to execute a function. This is useful e.g. when total.sep.page=TRUE and you wish to use locator to find the coordinates for positioning an abbreviation legend before it’s too late and a new page is started (i.e., total.fun=function()print(locator(1)));

verbose  set to TRUE to get printed output detailing how tick marks are chosen and labeled for function axes. This is useful in seeing how certain linear predictor values cannot be solved for using inverse linear interpolation on the (requested linear predictor values, function values at these lp values). When this happens you will see NAs in the verbose output, and the corresponding tick marks will not appear in the nomogram.

total.min  Setting the minimal value in the total point axis on the nomogram.

total.max  Setting the maximal value in the total point axis.

mikeomit  The predictor variables specified by their names here will not be shown in the nomogram. The predicted outcome based on this reduced nomogram would be the same as if users were using the full version of the nomogram by entering the some values for the predictors remaining in the reduced nomogram but adjusted values for the hidden predictors so that 0 points will be achieved from these hidden predictor variables in the full nomogram.

Details

The nomogram does not have lines representing sums, but it has a reference line for reading scoring points (default range 0–100). Once the reader manually totals the points, the predicted values can be read at the bottom. Non-monotonic transformations of continuous variables are handled (scales wrap around), as are transformations which have flat sections (tick marks are labeled with ranges).

Value

a list of class "nomogram" that contains information used in plotting the axes. Please see nomogram for details.

Note

internal use only

Author(s)

Frank Harrell
Department of Biostatistics
Vanderbilt University
<f.harrell@vanderbilt.edu>

Draw a Competing Risks Nomogram

Draws a partial nomogram adjusting for competing risks for a cox ph survival model.

Changhong Yu, Michael Kattan, Ph.D
Department of Quantitative Health Sciences
Cleveland Clinic
References


See Also

nomogram, crr.fit, pred2.crr, nomo2.crr

Examples

data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) +
  BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) +
  RACE_AA, data = prostate.dat, x = TRUE, y = TRUE, surv=TRUE,time.inc = 144)
prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)
## make a CRR nomogram
nomogram.crr(prostate.crr,failtime = 120,lp=FALSE,
  funlabel = "Predicted 10-year cumulative incidence")

nomogram.mk6

Draw a Nomogram with modified function Nomogram

Description

Draw a Nomogram from a regression model

Usage

nomogram.mk6(fit, ..., adj.to, lp = TRUE, lp.at,
  lplabel = "Linear Predictor",
  fun, fun.at, fun.lp.at, funlabel = "Predicted Value", fun.side,
  interact = NULL, intercept = 1, conf.int = FALSE,
  col.conf = c(1, 12), conf.space = c(0.08, 0.2),
  conf.lp = c("representative", "all", "none"), est.all = TRUE,
  abbrev = FALSE, minlength = 4, maxscale = 100, nint = 10,
  label.every = 1, force.label = FALSE, xfrac = 0.35, cex.axis = 0.85,
cex.var = 1, col.grid = NULL, vnames = c("labels", "names"),
varname.label = TRUE, varname.label.sep = "=", ia.space = 0.7,
tck = NA, tcl = -0.25, lmgp = 0.4, omit = NULL, naxes,
points.label = "Points",
total.points.label = "Total Points", total.sep.page = FALSE,
total.fun, verbose = FALSE, cap.labels = FALSE, total.min,
total.max, survtime, mikeomit = NULL)

Arguments

fit
a regression model fit that was created with library(rms) in effect, and (usually) with options(datadist = "object.name") in effect.

... settings of variables to use in constructing axes. If datadist was in effect, the default is to use pretty(range of continuous variables) for continuous variables, and the class levels for discrete ones. For legend.nomabbrev, ... specifies optional parameters to pass to legend. Common ones are bty = "n" to suppress drawing the box. You may want to specify a non-proportionally spaced font (e.g., courier) number if abbreviations are more than one letter long. This will make the abbreviation definitions line up (e.g., specify font = 2, the default for courier). Ignored for print.

adj.to
If you didn't define datadist for all predictors, you will have to define adjustment settings for the undefined ones, e.g. adj.to = list(age = 50, sex = "female").

lp
Set to FALSE to suppress creation of an axis for scoring $X\beta$.

lp.at
If lp=TRUE, lp.at may specify a vector of settings of $X\beta$. Default is to use pretty(range of linear predictors,nint).

lplabel
label for linear predictor axis. Default is "Linear Predictor".

fun
on another axis. If more than one transformation is plotted, put them in a list, e.g. list(function(x) x/2, function(x) 2*x). Any function values equal to NA will be ignored.

fun.at
function values to label on axis. Default fun evaluated at lp.at. If more than one fun was specified, using a vector for fun.at will cause all functions to be evaluated at the same argument values. To use different values, specify a list of vectors for fun.at, with elements corresponding to the different functions (lists of vectors also applies to fun.lp.at and fun.side).

fun.lp.at
If you want to evaluate one of the functions at a different set of linear predictor values than may have been used in constructing the linear predictor axis, specify a vector or list of vectors of linear predictor values at which to evaluate the function. This is especially useful for discrete functions. The presence of this attribute also does away with the need for nomogram to compute numerical approximations of the inverse of the function. It also allows the user-supplied function to return factor objects, which is useful when e.g. a single tick mark position actually represents a range. If the fun.lp.at parameter is present, the fun.at vector for that function is ignored.

funlabel
label for fun axis. If more than one function was given but funlabel is of length one, it will be duplicated as needed. If fun is a list of functions for which
you specified names (see the final example below), these names will be used as labels.

**fun.side**
a vector or list of vectors of side parameters for the axis function for labeling function values. Values may be 1 to position a tick mark label below the axis (the default), or 3 for above the axis. If for example an axis has 5 tick mark labels and the second and third will run into each other, specify `fun.side=c(1,1,3,1,1)` (assuming only one function is specified as `fun`).

**interact**
When a continuous variable interacts with a discrete one, axes are constructed so that the continuous variable moves within the axis, and separate axes represent levels of interacting factors. For interactions between two continuous variables, all but the axis variable must have discrete levels defined in `interact`. For discrete interacting factors, you may specify levels to use in constructing the multiple axes. For continuous interacting factors, you must do this. Examples: `interact = list(age = seq(10,70,by=10),treat = c("A","B","D"))`.

**intercept**
for models such as the ordinal logistic model with multiple intercepts, specifies which one to use in evaluating the linear predictor.

**conf.int**
confidence levels to display for each scoring. Default is `FALSE` to display no confidence limits. Setting `conf.int` to `TRUE` is the same as setting it to `c(0.7,0.9)`, with the line segment between the 0.7 and 0.9 levels shaded using gray scale.

**col.conf**
colors corresponding to `conf.int`. Use fractions for gray scale(for UNIX S-PLUS).

**conf.space**
a 2-element vector with the vertical range within which to draw confidence bars, in units of 1=spacing between main bars. Four heights are used within this range (8 for the linear predictor if more than 16 unique values were evaluated), cycling them among separate confidence intervals to reduce overlapping.

**conf.lp**
default is "representative" to group all linear predictors evaluated into deciles, and to show, for the linear predictor confidence intervals, only the mean linear predictor within the deciles along with the median standard error within the deciles. Set `conf.lp = "none"` to suppress confidence limits for the linear predictors, and to "all" to show all confidence limits.

**est.all**
To plot axes for only the subset of variables named in ..., set `est.all = FALSE`. Note: This option only works when zero has a special meaning for the variables that are omitted from the graph.

**abbrev**
Set to `TRUE` to use the `abbreviate` function to abbreviate levels of categorical factors, both for labeling tick marks and for axis titles. If you only want to abbreviate certain predictor variables, set `abbrev` to a vector of character strings containing their names.

**minlength**
`abbreviate` function. If you set `minlength = 1`, the letters of the alphabet are used to label tick marks for categorical predictors, and all letters are drawn no matter how close together they are. For labeling axes (interaction settings), `minlength = 1` causes `minlength = 4` to be used.

**maxscale**
default maximum point score is 100

**nint**
number of intervals to label for axes representing continuous variables. See `pretty`.

**label.every**
Specify `label.every = i` to label on every `i`th tick mark
force.label set to TRUE to force every tick mark intended to be labeled to have a label plotted (whether the labels run into each other or not)

xfrac fraction of horizontal plot to set aside for axis titles

cex.axis character size for tick mark labels

cex.var character size for axis titles (variable names)

col.grid If left unspecified, no vertical reference lines are drawn. Specify a vector of length one (to use the same color for both minor and major reference lines) or two (corresponding to the color for the major and minor divisions, respectively) containing colors, to cause vertical reference lines to the top points scale to be drawn. For R, a good choice is col.grid = gray(c(0.8, 0.95)).

vnames By default, variable labels are used to label axes. Set vnames = "names" to instead use variable names.

varname.label In constructing axis titles for interactions, the default is to add (interacting.varname = level) on the right. Specify varname.label = FALSE to instead use "(level)."

varname.label.sep If varname.label = TRUE, you can change the separator to something other than = by specifying this parameter.

ia.space When multiple axes are draw for levels of interacting factors, the default is to group combinations related to a main effect. This is done by spacing the axes for the second to last of these within a group only 0.7 (by default) of the way down as compared with normal space of 1 unit.

tck see tck under par

tcl length of tick marks in nomogram

lmgp spacing between numeric axis labels and axis (see par for mgp)

omit vector of character strings containing names of variables for which to suppress drawing axes.

naxes maximum number of axes to allow on one plot. If the nomogram requires more than one “page”, the “Points” axis will be repeated at the top of each page when necessary.

points.label a character string giving the axis label for the points scale

total.points.label a character string giving the axis label for the total points scale

total.sep.page set to TRUE to force the total points and later axes to be placed on a separate page

total.fun a user-provided function that will be executed before the total points axis is drawn. Default is not to execute a function. This is useful e.g. when total.sep.page = TRUE and you wish to use locator to find the coordinates for positioning an abbreviation legend before it’s too late and a new page is started (i.e., total.fun = function() print(locator(1))).

verbose set to TRUE to get printed output detailing how tick marks are chosen and labeled for function axes. This is useful in seeing how certain linear predictor values cannot be solved for using inverse linear interpolation on the (requested linear predictor values, function values at these lp values). When this happens you will see NAs in the verbose output, and the corresponding tick marks will not appear in the nomogram.
cap.labels  logical: should the factor labels have their first letter capitalized?
total.min   the minimum point for the total point axis
total.max   the maximum point for the total point axis
survtime    specified survival time for the predicted survival probability
mikeomit    a modified version of omit

Details
a modified version of nomogram in rms package

Value
a nomogram object

Note
internal use only. please reference to nomogram details.

References
Lubsen J, Pool J, van der Does, E: A practical device for the application of a diagnostic or prognostic

See Also
rms, plot.summary.rms, axis, pretty, approx

Examples

data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) +
                 BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) +
                 RACE-AA, data = prostate.dat,
                 x = TRUE, y = TRUE, surv=TRUE, time.inc = 144)
## make a cph nomogram
nomogram.mk6(prostate.f, survtime=120, lp=FALSE,
             funlabel = "Predicted 10-year cumulative incidence")
**pred.ci**  
*Calculate Cumulative Incidence*

**Description**
Calculate Cumulative Incidence

**Usage**
pred.ci(cum, tm1, failcode)

**Arguments**
cum a object from function `cuminc`
tm1 expected failure time
failcode value indicating the event of interest

**Details**
Extract cumulative incidence and its variance from a object generated from function `cuminc`.

**Value**
a data frame with 3 columns.
column 3: Group name.
column 2: Cumulative Incidence Probability.
column 3: Variance

**Author(s)**
Michael W. Kattan, Ph.D. and Changhong Yu.
Department of Quantitative Health Sciences, Cleveland Clinic

**See Also**
cuminc

**Examples**
```r
data(prostate.dat) # get demo data set
cum <- cuminc(prostate.dat$TIME_EVENT, prostate.dat$EVENT_DOD, cencode = 0)
calculate the expected cumulative incidence by 5 year for death from prostate cancer
Here, code for cause A is 'DOA'.
pred.ci(cum, 60, failcode = 1)
```
pred2.crr  
*Predict Cumulative Incidence Rate*

**Description**

Predict Cumulative Incidence Rate

**Usage**

```r
pred2.crr(f.crr, lp, time)
```

**Arguments**

- `f.crr`  
  a saved competing risks regression model created by function `crr.fit`
- `lp`  
  a scalar being the sum of linear predictors for a single subject.
- `time`  
  expected time point, at which cumulative incidence rate will be assessed.

**Details**

Calculate the predicted cumulative incidence rate based on a saved competing risks regression model. The cumulative incidence is adjusted for other competing causes rather than the event of interest.

**Value**

Return the predicted cumulative incidence rate.

**Author(s)**

Michael Kattan, Ph.D, Changhong Yu  
Department of Quantitative Health Sciences  
Cleveland Clinic

**See Also**

`predict.crr`, `crr.fit`
**pred3.crr**

Predict cumulative incidence used internally

---

**Description**

Predict cumulative incidence used internally an internal function.

**Usage**

```r
pred3.crr(z, cov1, cov2, time, lps = FALSE)
```

**Arguments**

- `z`: the fitter crr model
- `cov1`: covariate matrix 1
- `cov2`: covariate matrix 2
- `time`: time point at which the prediction will make
- `lps`: logical flag. if the liner predictor be generated.

**Details**

Internally used only.

**Value**

A list. See `crr` for details.

**Note**

an internal function called by `crr.fit`.

**Author(s)**

changhong
Description

Calculate Predicted Competing Risks Probability.

Usage

## S3 method for class 'cmprsk'
predict(object, newdata = NULL, time,
        lps = FALSE, ...)

Arguments

- **object**: a saved crr model fit created by function `crr.fit`
- **newdata**: data frame for prediction. Each row of the data frame contains values of covariates that are required in the crr model. If missing, the original data set that was used to develop the crr model will be used for prediction.
- **time**: expected time point for evaluating the competing risks probability.
- **lps**: set TRUE to return linear predictor values instead of failure probabilities.
- **...**: other arguments

Details

Calculate predicted probabilities for a competing risks regression model, which is fitted by function `crr.fit`.

Value

A vector with the length equal to the number of rows in the data frame, which was used to make prediction. Each element corresponds to a predicted failure probability at the expected time point.

Note

This function is adapted from function `predict.crr` in package `cmprsk`.

Author(s)

Michael W. Kattan, Ph.D. and Changhong Yu.
Department of Quantitative Health Sciences, Cleveland Clinic

References

See Also

crr.fit, predict.crr

Examples

data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) +
    BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) +
    RACE_AA, data = prostate.dat,
    x = TRUE, y= TRUE, surv=TRUE, time.inc = 144)
prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)
prostate.dat$pred.60 <- predict(prostate.crr, time=60)

predictDesign

Internal function to Calculate Predicted Competing Risks Probability.

Description

Internal function to Calculate Predicted Competing Risks Probability.

Usage

predictDesign(
    fit,
    newdata = NULL,
    type = c("lp", "x", "data.frame", "terms", "adjto", "adjto.data.frame",
    "model.frame"),
    se.fit = FALSE,
    conf.int = FALSE,
    conf.type = c("mean", "individual"),
    incl.non.slopes = NULL,
    non.slopes = NULL,
    kint = 1,
    na.action = na.keep,
    expand.na = TRUE,
    center.terms = TRUE,
    ...
)
Arguments

- **fit**: a saved crr model fit created by function
- **newdata**: data frame for prediction. Each row of the data frame contains values of covariates that are required in the crr model. If missing, the original data set that was used to develop the crr model will be used for prediction.
- **type**: type of output desired
- **se.fit**: return standard error
- **conf.int**: specify conf.int as a positive fraction to obtain upper and lower confidence intervals (e.g., `conf.int=0.95`).
- **conf.type**: specifies the type of confidence interval.
- **incl.non.slopes**: set to ‘TRUE’ to include multiple intercepts, default is ‘NULL’
- **non.slopes**: a vector of multiple intercepts
- **kint**: a single integer specifying the number of the intercept to use in multiple-intercept models.
- **na.action**: Function to handle missing values in ‘newdata’.
- **expand.na**: set to ‘FALSE’ to keep the naresid from having any effect
- **center.terms**: set to ‘FALSE’ to suppress subtracting adjust-to values from columns of the design matrix before computing terms with ‘type=”terms”’.
- **...**: ignored crr.fit

Details

Calculate predicted probabilities for a competing risks regression model

Value

A vector with the length equal to the number of rows in the data frame, which was used to make prediction. Each element corresponds to a predicted failure probability at the expected time point.

See Also

- `predictrms`

---

**prostate.dat**

Prostate cancer data set

Description

This is an artificial prostate cancer dataset used for illustrating the usages of functions in R package and QHScrnomo
Format

A data frame with 2000 observations on the following 9 variables.

UNIQID  patient ID
TX  Treatment options of prostate cancer with levels EBRT, PI, RP
PSA  Pre-treatment PSA levels
BX_GLSN_CAT  Biopsy Gleason Score Sum. a factor with levels 1 for 2-6 2 for 7 and 3 for 8-10
CLIN_STG  Clinical stage with levels T1, T2, T3
AGE  Age at treatment date
RACE_AA  patient ethnicity. a factor with levels 0 for other and 1 for African American
TIME_EVENT  follow up time in months
EVENT_DOD  followup status, 0 - censored, 1 - died of prostate cancer, 2 - died of other causes

Details

This is a simulated data set.

Examples

data(prostate.dat)

sas.cmprsk  generate prediction equation for a competing risks regression models

Description

Generate an equation to calculate $X \beta$ from a crr model fit. If specify a time point, the function also generates the subcumulative rate at the time point.

Usage

sas.cmprsk(f, time = NA, baseonly = FALSE, file = "", append = FALSE)

Arguments

f  a model fit from the competing risks regression.
time  time point
baseonly  logical variable. If true, only base survival probability will be printed.
file  A connection, or a character string naming the file to print to
append  logical. Only used if the argument file is the name of file. If TRUE output will be appended to file; otherwise, it will overwrite the content of file
Details

f should be fitted by the function `crr.fit`

Value

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>out</td>
<td>a character vector that can be output as a formula by function <code>cat</code></td>
</tr>
<tr>
<td>Rout</td>
<td>same as out except replacing &quot;max&quot;,&quot;min&quot;,&quot;=&quot; and &quot;**&quot; with &quot;pmax&quot;,&quot;pmin&quot;,&quot;==&quot; and ^ respectively so that the formula can be pasted to R session and compute ( X ) beta directly without any further modification</td>
</tr>
</tbody>
</table>

Author(s)

changhong

See Also

`sascode.Function,crr.fit`

Examples

data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) + BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) + RACE_AA, data = prostate.dat,
                   x = TRUE, y = TRUE, surv=TRUE,time.inc = 144)
prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)
sas.cmprsk(prostate.crr, time = 60)
Details
summarize a crr regression model

Value
a matrix

Author(s)
changhong

Examples

data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) +
                BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) +
                RACE_AA, data = prostate.dat,
x = TRUE, y = TRUE, surv=TRUE,time.inc = 144)
prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)
summary(prostate.crr)

tenf.crr
Ten fold cross validation for competing risks regression

Description
Ten fold cross validation for crr endpoint

Usage
tenf.crr(fit, time = NA, lps = FALSE, fold = 10)

Arguments

fit a competing risks regression model fittd by function crr.fit.
time the expected time point.
lps logical flag. If true, values of predicted X beta will be output instead of cumula-tive incidence
fold number of fold. the default is 10 fold cross validation.

Details
Do cross validation on a competing risk regression model.
Value

A vector of predicted values of cumulative incidence or X beta for each observation.

Note

Before the function is called, packages 'Hmisc', 'rms' and 'cmprsk' should be loaded as the function will call some functions in these packages.

Author(s)

Changhong Yu, Michael Kattan, Ph.D
Department of Quantitative Health Sciences
Cleveland Clinic

See Also

crr.fit, crr

Examples

data(prostate.dat)
dd <- datadist(prostate.dat)
options(datadist = "dd")
prostate.f <- cph(Surv(TIME_EVENT,EVENT_DOD == 1) ~ TX + rcs(PSA,3) + BX_GLSN_CAT + CLIN_STG + rcs(AGE,3) + RACE_AA, data = prostate.dat, x = TRUE, y = TRUE, surv = TRUE, time.inc = 144)
prostate.crr <- crr.fit(prostate.f,cencode = 0,failcode = 1)

# ten fold cross validation
prostate.dat$preds.tenf<- 
tenf.crr(prostate.crr,time = 120)
Index

* attributes
  Newlabels.cmprsk, 10
  Newlevels.cmprsk, 11
* datagen
  pred.ci, 23
  predict.cmprsk, 26
* datasets
  prostate.dat, 28
* graphics
  nomogram.mk6, 18
* hplot
  nomogram.crr, 13
* models
  nomogram.crr, 13
  tenf.crr, 31
* multivariate
  crr.fit, 5
* nonparametric
  groupci, 7
* regression
  cindex, 4
  nomogram.crr, 13
  sas.cmprsk, 29
* semiparametric
  cindex, 4
* survival
  crr.fit, 5
  groupci, 7
  nomo2.crr, 12
  pred.ci, 23
  pred2.crr, 24
  predict.cmprsk, 26
  sas.cmprsk, 29
  tenf.crr, 31
* utilities
  nomo2.crr, 12
  pred2.crr, 24
abbreviate, 20
addOffset4ModelFrame, 2
anova.cmprsk, 3
approx, 22
axis, 22
cindex, 4
cph, 5, 6
crr, 5, 6, 13, 25, 32
crr.fit, 3, 5, 12–14, 18, 24–27, 30–32
cuminc, 9, 23
Function, 30
groupci, 7
Newlabels, 10
Newlabels.cmprsk, 10
Newlevels, 11
Newlevels.cmprsk, 11
nomo2.crr, 12, 18
nomogram, 17, 18, 22
nomogram.crr, 6, 13
nomogram.mk6, 18
par, 21
plot.summary.rms, 22
pred.ci, 9, 23
pred2.crr, 13, 18, 24
pred3.crr, 25
predict.cmprsk, 9, 26
predict.crr, 24, 26, 27
predictDesign, 27
predicttrms, 28
pretty, 20, 22
prostate.dat, 28
rms, 22
sas.cmprsk, 29
sascode, 30
summary.cmprsk, 30
tenf.crr, 6, 31