Package ‘RCSF’

February 4, 2020

Type Package
Title Airborne LiDAR Filtering Method Based on Cloth Simulation
Version 1.0.2
Date 2020-02-04
Description
Cloth Simulation Filter (CSF) is an airborne LiDAR (Light Detection and Ranging) ground
points filtering algorithm which is based on cloth simulation. It tries to simulate the interactions
between the cloth nodes and the corresponding LiDAR points, the locations of the cloth nodes can be
determined to generate an approximation of the ground surface <https://www.mdpi.com/2072-

Depends R (>= 3.1.0)
Suggests testthat
License Apache License 2.0
Encoding UTF-8
LazyData true
LinkingTo Rcpp
Imports Rcpp
RoxygenNote 7.0.2
NeedsCompilation yes
Author Jean-Romain Roussel [aut, cre, cph],
Jianbo Qi [aut, cph],
Wuming Zhang [cph],
Peng Wan [cph],
Hongtao Wang [cph],
State Key Laboratory of Remote Sensing Science, Institute of Remote
Sensing Science and Engineering, Beijing Normal University [cph]
Maintainer Jean-Romain Roussel <jean-romain.roussel.1@ulaval.ca>
Repository CRAN
Date/Publication 2020-02-04 19:30:06 UTC
Description

Airborne LiDAR filtering method of ground points based on Cloth Simulation (Zhang et al. 2016, see references). This function is an R wrapper around the library written by the original authors of the algorithm. The ALS point cloud is inverted, and then a rigid cloth is used to cover the inverted surface. By analyzing the interactions between the cloth nodes and the corresponding LiDAR points, the locations of the cloth nodes can be determined to generate an approximation of the ground surface.

Usage

```r
CSF(
  cloud,
  sloop_smooth = FALSE,
  class_threshold = 0.5,
  cloth_resolution = 0.5,
  rigidness = 1L,
  iterations = 500L,
  time_step = 0.65
)
```

Arguments

- **cloud** | data.frame with 3 columns named X, Y, Z containing the coordinates of the point cloud.
- **sloop_smooth** | logical. When sharp slopes exist, set this parameter to TRUE to perform a post-processing which will reduce errors.
- **class_threshold** | scalar. The distance to the simulated cloth to classify point cloud into ground and non-ground. The default is 0.5.
- **cloth_resolution** | scalar. The distance between particles in cloth. This is usually set to the average distance of the points in the point cloud. The default value is 0.5.
- **rigidness** | integer. The rigidness of the cloth. 1 stands for very soft cloth (to fit rugged terrain), 2 stands for medium cloth and 3 stands for hard cloth (for flat terrain). The default is 1.
rcsf_cloud

- **iterations** integer. Maximum iteration for simulating cloth. The default value is 500. Usually, users do not need to change this.
- **time_step** scalar. Time step when simulating the cloth under the gravity. The default value is 0.65. Usually, Do not change this value. It is suitable for most cases.

Value

An integer vector containing the ids of the points that belong on the ground.

References

Examples

```r
data(rcsf_cloud)
head(rcsf_cloud)
id_ground = CSF(rcsf_cloud)
```

rcsf_cloud

Airborne LiDAR point cloud

Description

A dataset containing a small point cloud acquired with airborne LiDAR.

Usage

```r
rcsf_cloud
```

Format

A data frame with 28668 rows and 3 variables:

- **X** x coordinates
- **Y** y coordinates
- **Z** z coordinates
Index

*Topic datasets
 rcsf_cloud, 3

CSF, 2

rcsf_cloud, 3