Package ‘RPESE’

June 9, 2021

Type Package

Title Estimates of Standard Errors for Risk and Performance Measures

Version 1.2.3

Date 2021-06-08

Author Anthony Christidis <anthony.christidis@stat.ubc.ca>,
Xin Chen <chenx26@uw.edu>

Maintainer Anthony Christidis <anthony.christidis@stat.ubc.ca>

Biarch true

License GPL (>= 2)

Imports xts, zoo, boot, RPEIF, RPEGLMEN, RobStatTM

Suggests testthat, R.rsp, PerformanceAnalytics

Depends

RoxygenNote 7.0.2

VignetteBuilder R.rsp

NeedsCompilation no

Repository CRAN

Date/Publication 2021-06-09 07:20:05 UTC

R topics documented:

DSR.SE ... 2
ES.SE ... 3
ESratio.SE ... 5
EstimatorSE .. 7
LPM.SE ... 8
Mean.SE ... 10
OmegaRatio.SE .. 11
printSE 13
RachevRatio.SE 14
robMean.SE 15
SD.SE 17
SemiSD.SE 18
SoR.SE 20
SR.SE 21
VaR.SE 23
VaRratio.SE 24

Index 27

DSR.SE Standard Error Estimate for Downside Sharpe Ratio (DSR) of Returns

Description
ES.SE computes the standard error of the downside Sharpe ratio of the returns.

Usage
DSR.SE(
data, rf = 0, se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1, 4],
cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], d.GLM.EN = 5,
freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5,
corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], return.coef = FALSE,
...
)

Arguments
data Data of returns for one or multiple assets or portfolios.
rf Risk free rate.
se.method A character string indicating which method should be used to compute the standard error of the estimated standard deviation. One or a combination of: "IFiid" (default), "IFcor" (default), "IFcorPW", "IFcorAdapt", "BOOTiid" or "BOOTcor".
cleanOutliers Boolean variable to indicate whether the pre-whitening of the influence functions TS should be done through a robust filter. Default if FALSE.
fitting.method Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".
d.GLM.EN Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5.

freq.include Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate."

freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.

corOut Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default).

return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE.

... Additional parameters.

Value

A vector or a list depending on se.method.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF")
Computing the standard errors for
the two influence functions based approaches
DSR.SE(edhec, se.method = c("IFiid","IFcor"),
cleanOutliers = FALSE,
fitting.method = c("Exponential", "Gamma")[1])

ES.SE

Standard Error Estimate for Expected Shortfall (ES) of Returns

Description

ES.SE computes the standard error of the expected shortfall of the returns.
Usage

ES.SE(
 data,
 p = 0.95,
 se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2],
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1],
 d.GLM.EN = 5,
 freq.include = c("All", "Decimate", "Truncate")[1],
 freq.par = 0.5,
 corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
 return.coef = FALSE,
 ...
)

Arguments

- **data**: Data of returns for one or multiple assets or portfolios.
- **p**: Confidence level for calculation. Default value is p = 0.95.
- **se.method**: A character string indicating which method should be used to compute the standard error of the estimated standard deviation. One or a combination of: "IFiid" (default), "IFcor" (default), "IFcorPW", "IFcorAdapt", "BOOTiid" or "BOOTcor".
- **cleanOutliers**: Boolean variable to indicate whether the pre-whitening of the influence functions TS should be done through a robust filter. Default if FALSE.
- **fitting.method**: Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".
- **d.GLM.EN**: Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5.
- **freq.include**: Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate."
- **freq.par**: Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.
- **corOut**: Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default).
- **return.coef**: Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE.
- **...**: Additional parameters.

Value

A vector or a list depending on se.method.

Author(s)

Xin Chen, <chenx26@uw.edu>
Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>
Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
 "ED", "FIA", "GM", "LS", "MA",
 "RV", "SS", "FOF")
Computing the standard errors for
the two influence functions based approaches
ES.SE(edhec, se.method = c("IFiid","IFcor"),
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1])

ESratio.SE

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESratio.SE computes the standard error of the expected shortfall ratio of the returns.</td>
</tr>
</tbody>
</table>

Usage

ESratio.SE(
 data,
 alpha = 0.1,
 rf = 0,
 se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1,
 4)],
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1],
 d.GLM.EN = 5,
 freq.include = c("All", "Decimate", "Truncate")[1],
 freq.par = 0.5,
 corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
 return.coef = FALSE,
 ...
)

Arguments

data: Data of returns for one or multiple assets or portfolios.
alpha: Lower tail probability.
rf: Risk-free interest rate.
se.method A character string indicating which method should be used to compute the
standard error of the estimated standard deviation. One or a combination of:
"IFiid" (default), "IFcor", "IFcorPW", "IFcorAdapt" (default), "BOOTiid"
or "BOOTcor".

cleanOutliers Boolean variable to indicate whether the pre-whitening of the influence
functions TS should be done through a robust filter. Default if FALSE.

fitting.method Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".

d.GLM.EN Order of the polynomial for the Exponential or Gamma fitting. Default polynomial
order of 5.

freq.include Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate"
or "Truncate."

freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.

corOut Return correlation of the returns or the influence function transformed returns.
Must be one of "retCor", "retIFCor" or "none" (default).

return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit
are returned. Default if FALSE.

... Additional parameters.

Value

A vector or a list depending on se.method.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
"ED", "FIA", "GM", "LS", "MA",
"RV", "SS", "FOF")
Computing the standard errors for
the two influence functions based approaches
ESratio.SE(edhec, se.method=c("IFiid", "IFcorAdapt"),
cleanOutliers=FALSE,
fitting.method=c("Exponential", "Gamma")[1])
EstimatorSE

Wrapper Function for Standard Errors Estimates Functions

Description

EstimatorSE computes the standard error for specified risk and performance measures.

Usage

EstimatorSE(
 data,
 estimator.fun = c("DSR", "ES", "ESratio", "LPM", "Mean", "OmegaRatio", "RachevRatio",
 "robMean", "SD", "SemiSD", "SR", "SoR", "VaR", "VaRratio")[1],
 se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1],
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1],
 d.GLM.EN = 5,
 freq.include = c("All", "Decimate", "Truncate")[1],
 freq.par = 0.5,
 a = 0.3,
 b = 0.7,
 return.coef = FALSE,
 ...
)

Arguments

data Data of returns for one or multiple assets or portfolios.
estimator.fun Risk or performance measure to compute estimates of standard errors.
se.method A character string indicating which method should be used to compute the standard error of the estimated standard deviation. One of: "IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor", or "none".
cleanOutliers Boolean variable to indicate whether the pre-whitenning of the influence functions TS should be done through a robust filter. Default if FALSE.
fitting.method Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".
d.GLM.EN Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5.
freq.include Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate."
freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.
a First adaptive method parameter.
b Second adaptive method parameter.
return.coef Boolean variable to indicate whether the coefficients of the Exponential or Gamma fit are returned. Default is FALSE.
...
Additional parameters.

Value

A vector standard error estimates.

Author(s)

Xin Chen, <chenx26@uw.edu>
Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

```r
# Loading data
data(edhec, package = "PerformanceAnalytics")
# Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
                 "ED", "FIA", "GM", "LS", "MA",
                 "RV", "SS", "FOF")
# Computing the standard errors for
# the three influence functions based approaches
EstimatorSE(edhec[,"CA"], se.method = c("IFcor"),
cleanOutliers = FALSE,
fitting.method = c("Exponential", "Gamma")[1])
```

LPM. SE

Standard Error Estimate for Lower Partial Moment (LPM) of Returns

Description

LPM. SE computes the standard error of the LPM of the returns.

Usage

```r
LPM. SE(
data,
const = 0,
order = 1,
se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2],
cleanOutliers = FALSE,
fitting.method = c("Exponential", "Gamma")[1],
d.GLM.EN = 5,
freq.include = c("All", "Decimate", "Truncate")[1],
freq.par = 0.5,
corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
```
return.coef = FALSE,
...
)

Arguments

data Data of returns for one or multiple assets or portfolios.
const Constant threshold.
order Order for the lower partial moment (should be 1 or 2).
se.method A character string indicating which method should be used to compute the
 standard error of the estimated standard deviation. One or a combination of:
 "IFiid" (default), "IFcor" (default), "IFcorPW", "IFcorAdapt", "BOOTiid"
 or "BOOTcor".
cleanOutliers Boolean variable to indicate whether the pre-whitening of the influence
 functions TS should be done through a robust filter. Default if FALSE.
fitting.method Distribution used in the standard errors computation. Should be one of "Exponential"
 (default) or "Gamma".
d.GLM.EN Order of the polynomial for the Exponential or Gamma fitting. Default polynomial
 order of 5.
freq.include Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate"
 or "Truncate."
freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate."
 Default is 0.5.
corOut Return correlation of the returns or the influence function transformed returns.
 Must be one of "retCor", "retIFCor" or "none" (default).
return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit
 are returned. Default if FALSE.
... Additional parameters.

Value

A vector or a list depending on se.method.

Author(s)

Xin Chen, <chenx26@uw.edu>
Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
 "ED", "FIA", "GM", "LS", "MA",
 "RV", "SS", "FOF")
Computing the standard errors for
the two influence functions based approaches
LPM.SE(edhec, se.method = c("IFiid", "IFcor"),
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[[1]])

Mean.SE

Standard Error Estimate for Mean of Returns

Description

Mean.SE computes the standard error of the mean of the returns.

Usage

```r
Mean.SE(
data,
    se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[[1]],
    cleanOutliers = FALSE,
    fitting.method = c("Exponential", "Gamma")[[1]],
    d.GLM.EN = 5,
    freq.include = c("All", "Decimate", "Truncate")[[1]],
    freq.par = 0.5,
    corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[[1]],
    return.coef = FALSE,
    ...
)
```

Arguments

- **data**: Data of returns for one or multiple assets or portfolios.
- **se.method**: A character string indicating which method should be used to compute the standard error of the estimated standard deviation. One or a combination of: "IFiid" (default), "IFcor", "IFcorPW", "IFcorAdapt" (default), "BOOTiid" or "BOOTcor".
- **cleanOutliers**: Boolean variable to indicate whether the pre-whitening of the influence functions TS should be done through a robust filter. Default if FALSE.
- **fitting.method**: Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".
- **d.GLM.EN**: Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5.
- **freq.include**: Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate."
freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.
corOut Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default).
return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE.
...
Value
A vector or a list depending on se.method

Author(s)
Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
 "ED", "FIA", "GM", "LS", "MA",
 "RV", "SS", "FOF")
Computing the standard errors for
the two influence functions based approaches
Mean.SE(edhec, se.method = c("IFiid","IFcorAdapt"),
cleanOutliers = FALSE,
fitting.method = c("Exponential", "Gamma")[1])
freq.include = c("All", "Decimate", "Truncate")[1],
freq.par = 0.5,
corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
return.coef = FALSE,
...
)

Arguments

data Data of returns for one or multiple assets or portfolios.
const Constant threshold.
se.method A character string indicating which method should be used to compute the
standard error of the estimated standard deviation. One or a combination of:
"IFiid" (default), "IFcor", "IFcorPW", "IFcorAdapt" (default), "BOOTiid", "BOOTcor".
cleanOutliers Boolean variable to indicate whether the pre-whitening of the influence func-
tions TS should be done through a robust filter. Default if FALSE.
fitting.method Distribution used in the standard errors computation. Should be one of "Exponential"
(default) or "Gamma".
d.GLM.EN Order of the polynomial for the Exponential or Gamma fitting. Default polyno-
mial order of 5.
freq.include Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate"
or "Truncate."
freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Trun-
cate." Default is 0.5.
corOut Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default).
return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE.
...
Additional parameters.

Value

A vector or a list depending on se.method.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
"ED", "FIA", "GM", "LS", "MA",
"RV", "SS", "FOF")
printSE

Computing the standard errors for
the two influence functions based approaches
OmegaRatio.SE(edhec, se.method = c("IFiid","IFcorAdapt")[[1]],
cleanOutliers = FALSE,
fitting.method = c("Exponential", "Gamma")[[1]])

printSE

Formatted Output for Standard Errors Functions in RPESE

Description

printSE returns a formatted output from standard error functions from RPESE.

Usage

printSE(SE.data, round.digit = 3, round.out = TRUE)

Arguments

SE.data Standard error estimates output from RPESE functions.
round.digit Number of digits for rounding.
round.out Round data (TRUE) with round.digit number of digits. Default is TRUE.

Value

A data frame with formatted output from standard error functions from RPESE.

Author(s)

Xin Chen, <chenx26@uw.edu>
Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
"ED", "FIA", "GM", "LS", "MA",
"RV", "SS", "FOF")
Computing the standard errors for
the two influence functions based approaches
ES.out <- ES.SE(edhec, se.method = c("IFiid","IFcor"),
cleanOutliers = FALSE,
fitting.method = c("Exponential", "Gamma")[[1]])
Print the output
printSE(ES.out)
RachevRatio.SE computes the standard error of the Rachev ratio of the returns.

Usage

RachevRatio.SE(
 data,
 alpha = 0.1,
 beta = 0.1,
 se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)],
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1],
 d.GLM.EN = 5,
 freq.include = c("All", "Decimate", "Truncate")[1],
 freq.par = 0.5,
 corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
 return.coef = FALSE,
 ...
)

Arguments

data: Data of returns for one or multiple assets or portfolios.
alpha: Lower tail probability.
beta: Upper tail probability.
se.method: A character string indicating which method should be used to compute the standard error of the estimated standard deviation. One or a combination of: "IFiid" (default), "IFcor", "IFcorPW", "IFcorAdapt" (default), "BOOTiid" or "BOOTcor".
cleanOutliers: Boolean variable to indicate whether the pre-whitening of the influence functions TS should be done through a robust filter. Default if FALSE.
fitting.method: Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".
d.GLM.EN: Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5.
freq.include: Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate."
freq.par: Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.
corOut Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default).
return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE.
...

Value

A vector or a list depending on se.method.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF")
Computing the standard errors for the two influence functions based approaches
RachevRatio.SE(edhec, se.method = c("IFiid","IFcorAdapt"),
cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1])

robMean.SE Standard Error Estimate for Robust Location (Mean) M-Estimator of Returns

Description

robMean.SE computes the standard error of the robust location (mean) M-estimator of the returns.

Usage

robMean.SE(
 data,
 family = c("mopt", "opt", "bisquare")[1],
 eff = 0.95,
 se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1, 4)],
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1],
 d.GLM.EN = 5,
Arguments

data Data of returns for one or multiple assets or portfolios.
family Family for robust m-estimator of location. Must be one of "mopt" (default), "opt" or "bisquare".

eff Tuning parameter for the normal distribution efficiency. Default is 0.99.

se.method A character string indicating which method should be used to compute the standard error of the estimated standard deviation. One or a combination of: "IFiid" (default), "IFcor", "IFcorPW", "IFcorAdapt" (default), "BOOTiid" or "BOOTcor".

cleanOutliers Boolean variable to indicate whether the pre-whitening of the influence functions TS should be done through a robust filter. Default if FALSE.

fitting.method Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".

d.GLM.EN Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5.

d.freq.include Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate."

d.freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.

d.corOut Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default).

d.return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE.

Value

A vector or a list depending on se.method.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
SD.SE

Standard Error Estimate for Standard Deviation (SD) of Returns

Description

SD.SE computes the standard error of the standard deviation of the returns.

Usage

```r
SD.SE(
  data,  
  se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2], 
  cleanOutliers = FALSE, 
  fitting.method = c("Exponential", "Gamma")[1], 
  d.GLM.EN = 5, 
  freq.include = c("All", "Decimate", "Truncate")[1], 
  freq.par = 0.5, 
  corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1], 
  return.coef = FALSE, 
  ... 
)
```

Arguments

- **data**
 Data of returns for one or multiple assets or portfolios.

- **se.method**
 A character string indicating which method should be used to compute the standard error of the estimated standard deviation. One or a combination of: "IFiid" (default), "IFcor" (default), "IFcorPW", "IFcorAdapt" (default), "BOOTiid", or "BOOTcor".

- **cleanOutliers**
 Boolean variable to indicate whether the pre-whitening of the influence functions TS should be done through a robust filter. Default if FALSE.

- **fitting.method**
 Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".

- **d.GLM.EN**
 Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5.

- **freq.include**
 Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate."
SemiSD.SE

freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.
corOut Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default).
return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE.
...

Value
A vector or a list depending on se.method.

Author(s)
Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples
Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
 "ED", "FIA", "GM", "LS", "MA",
 "RV", "SS", "FOF")
Computing the standard errors for
the two influence functions based approaches
SD.SE(edhec, se.method = c("IFiid","IFcor","IFcorAdapt"),
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1])

SemiSD.SE

Standard Error Estimate for Semi-Standared Deviation (SemiSD) of Returns

Description
SemiSD.SE computes the standard error of the SSD of the returns.

Usage
SemiSD.SE(
data,
 se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2],
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1],
 d.GLM.EN = 5,
 freq.include = c("All", "Decimate", "Truncate")[1],
 ...)
freq.par = 0.5,
corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
return.coef = FALSE,
...)

Arguments

data Data of returns for one or multiple assets or portfolios.
se.method A character string indicating which method should be used to compute the standard error of the estimated standard deviation. One or a combination of: "IFiid" (default), "IFcor" (default), "IFcorPW", "IFcorAdapt", "BOOTiid", "BOOTcor", or "none".
cleanOutliers Boolean variable to indicate whether the pre-whitening of the influence functions TS should be done through a robust filter. Default if FALSE.
fitting.method Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".
d.GLM.EN Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5.
freq.include Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate." freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.
corOut Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default).
return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE.
...
 Additional parameters.

Value
 A vector or a list depending on se.method.

Author(s)
Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
 "ED", "FIA", "GM", "LS", "MA",
 "RV", "SS", "FOF")
Computing the standard errors for
the two influence functions based approaches
SoR.SE

Standard Error Estimate for Sortino Ratio (SoR) of Returns

Description

SoR.SE computes the standard error of the Sortino ratio of the returns.

Usage

SoR.SE(
 data,
 const = 0,
 threshold = c("mean", "const")[1],
 se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1,
 4)],
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1],
 d.GLM.EN = 5,
 freq.include = c("All", "Decimate", "Truncate")[1],
 freq.par = 0.5,
 corOut = c("none", "retCor", "retIFCor")[1],
 return.coef = FALSE,
 ...
)

Arguments

data: Data of returns for one or multiple assets or portfolios.
const: Minimum acceptable return for threshold.
threshold: Parameter to determine whether we use a "mean" or "const" threshold.
se.method: A character string indicating which method should be used to compute the standard error of the estimated standard deviation. One or a combination of: "IFiid" (default), "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor".
cleanOutliers: Boolean variable to indicate whether the pre-whitening of the influence functions TS should be done through a robust filter. Default if FALSE.
fitting.method: Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".
d.GLM.EN: Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5.
freq.include Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate."

freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.

corOut Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default).

return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE.

Additional parameters.

Value

A vector or a list depending on se.method.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
 "ED", "FIA", "GM", "LS", "MA",
 "RV", "SS", "FOF")
Computing the standard errors for
the two influence functions based approaches
SoR.SE(edhec, se.method = c("IFiid", "IFcorAdapt"),
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1])

SR.SE

Standard Error Estimate for Sharpe Ratio (SR) of Returns

Description

SR.SE computes the standard error of the Sharpe ratio of the returns.

Usage

SR.SE(
 data,
 rf = 0,
 se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor") [c(1, 4)],
)
cleanOutliers = FALSE,
fitting.method = c("Exponential", "Gamma")[1],
d.GLM.EN = 5,
freq.include = c("All", "Decimate", "Truncate")[1],
freq.par = 0.5,
corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
return.coef = FALSE,
...)

Arguments

data Data of returns for one or multiple assets or portfolios.
rf Risk free rate.
se.method A character string indicating which method should be used to compute the standard error of the estimated standard deviation. One or a combination of: "IFiid" (default), "IFcor", "IFcorPW", "IFcorAdapt" (default), "BOOTiid" or "BOOTcor".
cleanOutliers Boolean variable to indicate whether the pre-whitening of the influence functions TS should be done through a robust filter. Default if FALSE.
fitting.method Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".
d.GLM.EN Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5.
freq.include Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate."
freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.
corOut Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default).
return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE.
...

Value
A vector or a list depending on se.method.

Author(s)
Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF")

Computing the standard errors for the two influence functions based approaches
SR.SE(edhec, se.method = c("IFiid","IFcorAdapt"),
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1])

VaR.SE

Standard Error Estimate for Value-at-Risk (VaR) of Returns

Description

VaR.SE computes the standard error of the value-at-risk of the returns.

Usage

```r
VaR.SE(
  data = NULL,
  alpha = 0.95,
  se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[1:2],
  cleanOutliers = FALSE,
  fitting.method = c("Exponential", "Gamma")[1],
  d.GLM.EN = 5,
  freq.include = c("All", "Decimate", "Truncate")[1],
  freq.par = 0.5,
  corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
  return.coef = FALSE,
  ...
)
```

Arguments

- `data`: Data of returns for one or multiple assets or portfolios.
- `alpha`: Confidence level for calculation. Default is alpha=0.95.
- `se.method`: A character string indicating which method should be used to compute the standard error of the estimated standard deviation. One or a combination of: "IFiid" (default), "IFcor" (default), "IFcorPW", "IFcorAdapt", "BOOTiid" or "BOOTcor".
- `cleanOutliers`: Boolean variable to indicate whether the pre-whitening of the influence functions TS should be done through a robust filter. Default if FALSE.
- `fitting.method`: Distribution used in the standard errors computation. Should be one of "Exponential" (default) or "Gamma".
d.GLM.EN Order of the polynomial for the Exponential or Gamma fitting. Default polynomial order of 5.

freq.include Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate" or "Truncate."

freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.

corOut Return correlation of the returns or the influence function transformed returns. Must be one of "retCor", "retIFCor" or "none" (default).

return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit are returned. Default if FALSE.

... Additional parameters.

Value

A vector or a list depending on se.method.

Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN", "ED", "FIA", "GM", "LS", "MA", "RV", "SS", "FOF")
Computing the standard errors for
the two influence functions based approaches
VaR.SE(edhec, se.method = c("IFiid", "IFcor"),
cleanOutliers = FALSE,
fitting.method = c("Exponential", "Gamma")[[1]])

VaRratio.SE Standard Error Estimate for Value-at-Risk Ratio (VaRratio) of Returns

Description

VaRratio.SE computes the standard error of the value-at-risk ratio of the returns.
Usage

VaRratio.SE(
 data,
 alpha = 0.1,
 rf = 0,
 se.method = c("IFiid", "IFcor", "IFcorAdapt", "IFcorPW", "BOOTiid", "BOOTcor")[c(1,
 4)],
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1],
 d.GLM.EN = 5,
 freq.include = c("All", "Decimate", "Truncate")[1],
 freq.par = 0.5,
 corOut = c("none", "retCor", "retIFCor", "retIFCorPW")[1],
 return.coef = FALSE,
 ...
)

Arguments

data Data of returns for one or multiple assets or portfolios.
alpha The tail probability of interest.
rf Risk-free interest rate.
se.method A character string indicating which method should be used to compute the
 standard error of the estimated standard deviation. One or a combination of:
 "IFiid" (default), "IFcor", "IFcorPW", "IFcorAdapt" (default), "BOOTiid"
 or "BOOTcor".
cleanOutliers Boolean variable to indicate whether the pre-whitening of the influence
functions TS should be done through a robust filter. Default if FALSE.
fitting.method Distribution used in the standard errors computation. Should be one of "Exponential"
 (default) or "Gamma".
d.GLM.EN Order of the polynomial for the Exponential or Gamma fitting. Default polynomial
 order of 5.
freq.include Frequency domain inclusion criteria. Must be one of "All" (default), "Decimate"
 or "Truncate."
freq.par Percentage of the frequency used if "freq.include" is "Decimate" or "Truncate." Default is 0.5.
corOut Return correlation of the returns or the influence function transformed returns.
 Must be one of "retCor", "retIFCor" or "none" (default).
return.coef Boolean variable to indicate whether the coefficients of the penalized GLM fit
 are returned. Default if FALSE.
...

Value

A vector or a list depending on se.method.
Author(s)

Anthony-Alexander Christidis, <anthony.christidis@stat.ubc.ca>

Examples

Loading data
data(edhec, package = "PerformanceAnalytics")
Changing the data colnames
names(edhec) = c("CA", "CTA", "DIS", "EM", "EMN",
 "ED", "FIA", "GM", "LS", "MA",
 "RV", "SS", "FOF")
Computing the standard errors for
the two influence functions based approaches
VaRratio.SE(edhec, se.method = c("IFiid", "IFcorAdapt"),
 cleanOutliers = FALSE,
 fitting.method = c("Exponential", "Gamma")[1])
Index

DSR.SE, 2
ES.SE, 3
ESratio.SE, 5
EstimatorSE, 7
LPM.SE, 8
Mean.SE, 10
OmegaRatio.SE, 11
printSE, 13
RachevRatio.SE, 14
robMean.SE, 15
SD.SE, 17
SemiSD.SE, 18
SoR.SE, 20
SR.SE, 21
VaR.SE, 23
VaRRatio.SE, 24